DC Disconnect

Jean Picard, Texas Instruments IEEE 802.3bt Task Force November 2014

Supporters

- Kousalya Balasubramanian / Cisco
- Christian Beia / ST
- Yair Darshan / Microsemi
- Sesha Panguluri / Broadcom
- Fred Schindler / SeenSimply

Goal of this Presentation

The motivation of this work is to determine how DC disconnect will be applied by a "bt" PSE for 2- and 4-pair systems, from PD type 1 to type 4.

Topics covered will include the "Maintain Power Signature" (MPS) parameters and how they will be applied.

Backwards compatibility will be discussed as well.

PSE Configurations: Type 3 and 4

PSE Equipment Port Identification	PSE Type	Detailed Description
2- or 4-pair, 15W, "bt"	3	 New MPS timing is available 1 x 2-pair or 2 x 2-pair with power "capability" of 15W
2- or 4-pair, 30W, "bt"	3	 New MPS timing is available 1 x 2-pair or 2 x 2-pair with power "capability" of 30W
4-pair, 60W, "bt"	3	 New MPS timing is available 2 x 2-pair with power "capability" of 60W
4-pair, < 100W, "bt"	4	 New MPS timing is available 2 x 2-pair with power "capability" of < 100W Note: Cable/channel requirements for type 4 operation still need to be defined.

MPS Timing

Long 1st class

event

- Type 3 and 4 <u>PSEs</u> will be required to support the "new" MPS timing, which includes a <u>much shorter</u> TMPS.
 - PSE TMPS = 6 ms maximum.
 - − PD requirement at PSE PI (worst case cable impedance) \ge 7 ms.
 - See Yseboodt and Abramson, "MPS Baseline Proposal", Norfolk, May 2014.
- Hence, a Type 3 or 4 <u>PD</u> will have the <u>option</u> of using this feature to <u>reduce</u> <u>standby system consumption</u>.
- Such PD will determine if the "new" MPS timing can be used by measuring the duration of the <u>first class</u> event (~85 ms).
 - If connected to a type 1 or 2 PSE, the 1st class finger is shorter (75 ms or 30 ms max), and the PD "knows" the "new" MPS is not applicable.
 - Also, there shouldn't be thermal concern since this is only ~13% longer than 802.3at Tpdc.
 - See Abramson, "IEEE P802.3bt Mutual Identification", Ottawa, Sept. 2014.
- There is also no interoperability issue with type 1 and 2 PDs.

Mark

 These PDs generate a much longer MPS pulse, and consequently they are automatically supported by a Type 3 or 4 PSE.

MPS Current Amplitude when Connected to a Type 3 Class 5 or 6, or Type 4 PD (Single Interface)

- We need to maintain the accuracy in disconnect sensing.
 - Picard, "An Optimum Approach to Apply DC Disconnect", Beijing, March 2014.
- Hence, if <u>class 5, 6 or 7</u>, the PD required current draw to maintain power (I_{port_MPS}) should be ~2x for single interface PD.
 - I_{port_MPS} changes from 10 mA to 22 mA.
 - Once it receives a 4th class event (and the 1st class event is "long"), the PD "knows" the threshold is ~2x (i.e. 10mA per 2-pair in ideal case).

PSE I_{HOLD} Definition and Current Imbalance with Single PD Interface

- "Per 2-pair" approach is a preferred solution for DC disconnect.
 - It provides a flexible & modular PSE solution to handle 2P and 4P applications.
 - It provides a much better coverage of fault handling and diagnostics.
- 2-pair DC disconnect requires acceptable P2P current balance (~+/-25% max) in the "return path", for a range of 10-20mA.
- Potential issues if PDs are using <u>discrete diode</u> bridges.
 - "Matched" Vf or tight Vf tolerance characteristics needed.
- Imbalance is an issue mostly for <u>class 5-6 Type 3</u> PDs, where power schottky diodes can be acceptable. Not really a problem for other classes.
 - If <u>Class 0-4 PD</u>, the PSE could turn off one channel to do a "2P" DC disconnect verification. Imbalance does <u>not</u> matter in this case, schottky diodes are OK.
 - <u>Class 7 PD</u> are expected to use integrated FET bridge. <u>Minimal impact on</u> imbalance.
- Also, what really matters here is the imbalance for the return path.
- Simple and reasonable cost solutions can be implemented for Class 5-6 PD (see next page).

Current Imbalance and PSE I_{HOLD} Definition with Single PD Interface

- In order to make this work for class <u>5-6-7</u>, we need a current imbalance of less than +/-15% for <u>the return path</u>. This means less than +/- ~1.5 mA.
- This can be, for example, combined with a slightly lower PSE I_{HOLD} range "per 2P" (4.5-9.5mA instead of 5-10mA) if connected to class 5 to 7 PD.
 - $I_{port_{MPS}}$ being 2 x 11 mA, we get the 1.5 mA margin needed.
- The input bridge below is an example on how to solve the imbalance issue for <u>class 5-6</u> at minimal costs. Two of the 4 diodes are replaced with FETs.
 - And, for minimal FET cost, we just need Rdson x I $_{full load} \leq Vf_diode$.

- At 10 mA, voltage drop is ~<u>100x smaller</u> than a schottky diode Vf.
- Calculations show < 15% imbalance (extreme WC) for <u>return path</u> since <u>only</u> <u>resistive elements (PD, PSE, cables, conn.)</u> are defining the imbalance.

MPS Current Amplitude if PD is Class 0-4

- If class 0-4 PD, the DC disconnect threshold is same for type 1, 2 and 3 PSEs.
 - Same as AT \Rightarrow 5 10 mA.
 - Imbalance requirement does not apply here, as discussed previously.
- A Type 3 PSE cannot know if the class 0-3 PD is type 1 or 3, or if a class 4 PD is type 2 or 3.
- Note that since it is class 0-4, a 2-channel PSE can still maintain its accuracy by turning off its 2nd switch while doing DC disconnect check with 1st switch.

-	"0	Id" MPS	"New" MPS class 0-4			Current margin (see Annex) not necessarily needed	
PD Type	Class	Max Power Sourced (@ PSE PI)	Event 1 (Class)	Event 2 (Class)	Event 3 (Class)	Event 4 (Class)	Event 5 (Class)
Power Level Indicated by Event			2/4-Pair 15W	2/4-Pair 30W	4-Pair 30W	4-Pair Up to 60W	4-Pair < 100W
1,3	0-3	< 15W	0-3	0-3	0-3	0-3	0-3
2,3	4	30W	4	4	4	4	4

The Case of Dual PD Interface

- There are two cases:
 - 1. Up to 25.5W PD input power each 2-pair. This is type 3.
 - 2. Up to ~35W (TBD) PD input power each 2-pair. This is type 4, since the power per 2-pair exceeds 25.5W.
- Since there is one PD interface per 2-pair, the DC disconnect is independently applied per 2-pair.
- For same reasons, the PSE DC disconnect threshold is maintained at same nominal threshold as type 2.
- Both power channels are required to support the "new" MPS timing.

PD Configurations Summary

PD Type	Class	PD interface	PSE Type	Class 1 st Finger Duration	PSE MPS Timing/Current thresh.	2 or 4 Pairs	PD Input Power	
1	0.2	Cingle	1,2	Short	Old/Old	2	< 12\\/	
0-3		Single	3	Long	New/Old	2	Z 12.M	
2	2	Single	1,2	Short	Old/Old	2	≤ 13W or 25.5W	
4	4		3	Long	New/Old	2	25.5W	
3			1,2	Short	Old/Old	2	≤ 13W or 25.5W	
	0-4	Single	С	Long	Now/Old	2	2 94141 25 5141	
			5	Long	New/Olu	2 x 2	3.84VV-23.3VV	
	5 Sing		3 /	long	Νονγ/Νονγ	2 v 2	40W	
	6	Single	5,4	Long	INC W/ INC W	2 ~ 2	51W	
	4 (each)	Dual	3, 4	Long	New/Old (each)	2 x 2	2 x 25.5W	
4	7	Single	4	Long	New/New	2 x 2	~71W (TBD)	
	5 (each)	Dual	4	Long	New/Old (each)	2 x 2	2 x ~35W (TBD)	

New MPS timing: Short (~ 6 ms) TMPS New MPS PSE Current threshold: 2 x 10 mA max Old MPS PSE Current threshold: 10 mA max

Summary

- The Concept proposed meets the following goals
 - Covers 2-pair and 4-pair configurations.
 - Covers Type 1 to Type 4 PSE and PD.
 - Covers single and dual PD interface applications.
 - Provides a simple means to allow the use of the new MPS timing and amplitude.
 - Provides backwards compatibility.
 - Maintains DC disconnect accuracy while minimizing cost impacts at both ends of the cable.
- What's next:
 - Complete the definition of the DC MPS Current parameters (I_{HOLD}, I_{port_MPS}) for a 4-pair type 3 and 4 PSE, as well as the PD return path current imbalance.
 - PD class 0-4 versus PD class 5-7.

Annex: Margin and Impact of Large Capacitance on MPS Current Waveform

Impact of Large Capacitance on MPS Current Waveform

- Large PD capacitance can effectively shorten an MPS pulse by "stealing" the current from the PSE. There are many possible solutions to address this.
 - For example, adding margin (ex: 1-2 mA) between the PD pulsed current amplitude and PSE threshold.
 - Or by increasing the pulse width of PD current (the 7 ms is <u>only a minimum</u> requirement).
 - Another approach is by inserting a blocking diode (FET's body diode).
 - See Yseboodt, "MPS Baseline Proposal", Norfolk, May 2014

