

IEE802.3 4P Task Force

Figure 33A-1- Rpair_max_PD and Rpair_min_PD PD common mode input effective impedance

November 2015
Yair Darshan/Microsemi
yadarshan@microsemi.com

Comment [Annex 33A. 5 Page 172 line 31]
Requested by remedy of comment \#5 from D1.3:
In Annex 33A. 5 to define Rpair_max_PD, Rpair_min_PD.
Suggested Remedy

1. Add the following text after line 31

RPair_PD_max and RPair_PD_min represent PD common mode input effective impedance of pairs of the same polarity.
The effective resistance Zi is the measured voltage Veff_pd_i, divided by the current through the path as described below and as shown in the example in Figure 33A-1.
Positive pairs:
Z1 $=$ RPair_PD_min $=$ Veff_pd1/i1
Z3 $=$ RPair_PD_max $=$ Veff_pd3/i3
Negative pairs:
Z2 $=$ RPair_PD_min $=$ Veff_pd2/i2
Z4 $=$ RPair_PD_max $=$ Veff_pd4/i4
2. Add figure 33A-1 after the above text as described in page 3 of darshan_01_1115.pdf3.
3. Lines 20-31: Change from RPair_max_PD to RPair_PD_max and from RPair_min_PD to RPair_PD_min. 10 occurrences.
4. In the equations in lines 21-27, add " $[\Omega]$ " after RPair_PD_max. 4 occurrences.
5. Delete Editor Note in lines 32-36.

Figure 33A-1- Example for PD common mode effective impedance calculation

