

System Unbalance Examples

Michael Paul, David Stover, and Heath Stewart

Issue

- The PSE contribution to system unbalance calculated using the values and methods from Draft 2.1 33B-4 is not in conformance with Icon-2p-unb from Table 33-19
- This presentation simply shows that the system is inoperable as defined
- The 33B-4 method for testing the PSE contribution to unbalance is well thought out
- The model shown in Figure 33B-1 and 33B-4 needs a small adjustment for the calculation to work

Class 6 Low Channel Resistance Example

Let:
Rpse_min $=0.1 \Omega$
Vsupply $=50.14 \mathrm{~V}$

Rpse_max $=2.010 * 0.1-0.04=0.161 \Omega$
$\mathrm{Ra}=$ Rpse_min + Rload_min $=0.723 \Omega$
$\mathrm{Rb}=$ Rpse_max + Rload_max $=1.450 \Omega$
$\operatorname{Re} 2 \mathrm{e}=\mathrm{Ra}| | \mathrm{Rb}=0.482 \Omega$
Icon $=1038 \mathrm{~mA}$
Ia / Ib = Rb / Ra = 2.005
Ia $=692.5 \mathrm{~mA}<-$ Violates Icon-2p-unb (682mA)
$\mathrm{Ib}=345.3 \mathrm{~mA}$

Figure 33B-1—PSE PI unbalance specification and E2EP2PRunb
$R_{\text {PSE_max }}=\left\{\begin{array}{ll}2.200 \times R_{\text {PSE_min }}-0.040 & \text { for Class 5 } \\ 2.010 \times R_{\text {PSE_min }}-0.040 & \text { for Class } 6 \\ 1.800 \times R_{\text {PSE_min }}-0.030 & \text { for Class 7 } \\ 1.750 \times R_{\text {PSE_min }}-0.030 & \text { for Class } 8\end{array}\right\}_{\Omega}$
Measurement methods to determine $R_{P S E _ \text {max }}$ and $R_{P S E _ \text {min }}$ and $I_{\text {Con-2P-unb }}$ are defined in 33B.2,33B.3, and 33B. 4 .

PSE Class	$\mathrm{R}_{\text {load_min }}(\Omega)$	$\mathrm{R}_{\text {load_max }}(\Omega)$	Additional information
5	0.723	1.628	$\mathrm{R}_{\text {load }}$ is at low channel resistance conditions
6	0.623	1.289	
7	0.590	1.090	
8	0.544	0.975	
5	5.920	7.190	$\mathrm{R}_{\text {load }}$ is at high channel resistance conditions
6	5.780	7.000	
7	5.710	6.870	
8	5.650	6.790	

Table 33B-1— $R_{\text {load_max }}$ and $\mathrm{R}_{\text {load_min }}$ requirements

Class 6 Low Channel Resistance Icon Calculation

```
Let:
Re2e = 0.482\Omega
Vsupply = 50.14V
Rthev = 2 * Re2e (factor of 2 for source and return paths)
Ppd = 51W
Vpd = [-1*Vsupply - sqrt(Vsupply^2 - 4 * Ppd * Rthev)] / 2
Vpd = 49.13V
Icon = (Vsupply - Vpd) / Rthev = 1038mA
```


Source of Error

- Rload_min and Rload_max are the lumped sum of the PD and Channel Effective Resistances
- This causes an error in the calculation of Pclass_pd
- I suggest we use a slightly more complicated model so that it is clear where the power calculation should be made.

Update Model Values

- Update Table 33B-1 so that Rload_max and Rload_min are broken into Channel and PD Components

Table $338-1-R_{\text {Road_max }}$ and $R_{\text {load_min }}$ requirements				PSE Class	Rpair_pd _min	$\begin{aligned} & \text { Rpair_pd } \\ & \text { _max } \end{aligned}$	Rpair_ch min	Rpair_ch _max
${ }_{\substack{\text { PSE } \\ \text { chass } \\ \text { chas } \\ \hline}}$	$\mathrm{R}_{\text {boxadial }}$ (8)	$\mathrm{R}_{\text {borat_ma }}(\Omega)$	Additional information	5	0.623	1.518	0.1	0.11
5	0.73	1.628	$\mathrm{R}_{\text {Read is a t ow chamel resitance conditions }}$					
6	0.63	1.289		6	0.523	1.179		
7	0.590	1.090		7	0.490	0.980		
8	0.54	0975						
5	5.22	7.190	$\mathrm{R}_{\text {ped }}$ is at tigig chamel resistance conditions	8	0.444	0.875		
6	5.880	7.000		5	0.623	1.518	5.9375	6.25
-	5.710	6.870						
8	5.65	6.790		6	0.523	1.179		
Measurement methods to determine $R_{\text {PSE_max }}$ and $R_{\text {PSE_min }}$ and $I_{\text {Con-2P-umb }}$ are defined in 33B.2, 33B 3B. 4.				7	0.490	0.980		
				8	0.444	0.875		

Updated Class 6 Low Channel Resistance Example

Let:
Rpse_min $=0.1 \Omega$
Vsupply $=50.14 \mathrm{~V}$

Rpse_max $=2.010 * 0.1-0.04=0.161 \Omega$
Ra $=$ Rpse_min + Rchan_min + Rpd_min $=0.723 \Omega$
$\mathrm{Rb}=$ Rpse_max + Rchan_max + Rpd_max $=1.450 \Omega$
$\operatorname{Re} 2 \mathrm{e}=\mathrm{Ra}| | \mathrm{Rb}=0.482 \Omega$
Icon $=1022 \mathrm{~mA}$
$\mathrm{Ia} / \mathrm{Ib}=\mathrm{Rb} / \mathrm{Ra}=2.005$
Ia $=682 \mathrm{~mA}<-$ This is in spec now (682mA) $\mathrm{Ib}=340 \mathrm{~mA}$

PSE Class	Rpair_pd min	Rpair_pd max	Rpair_ch min	Rpair_ch max
5	0.623	1.518	0.1	0.11
6	0.523	1.179		
7	0.490	0.980		
8	0.444	0.875		5.25
5	0.623	1.518	5.9375	
6	0.523	1.179		
7	0.490	0.980		
8	0.444	0.875		
7				

$R_{\text {PSE_max }}=$	$2.200 \times R_{\text {PSE_min }}-0.040$ for Class 5 $2.010 \times R_{\text {PSE_min }}-0.040$ for Class 6 $1.800 \times R_{\text {PSE_min }}-0.030$ for Class 7 $1.750 \times R_{\text {PSE_min }}-0.030$ for Class 8		6	0.523	1.179
			7	0.490	0.980
			8	0.444	0.875

Updated Class 6 Low Channel Resistance Icon Calculation

```
Let:
Re2e = 0.482\Omega
Vsupply = 50.14V
Rthev = 2 * Re2e (factor of 2 for source and return paths)
Ppd = 51W
Assume 683mA into Rpd Min
683mA^2 * 0.523\Omega = 244mW
336mA^2 * 1.179\Omega = 133mW
Rpd Power loss = 2 * ( 244mW + 133mW ) = 754mW
P_adj = 51W - 0.754W
Vpd = [-1*Vsupply - sqrt(Vsupply^2 - 4 * P_adj * Rthev)] / 2
Vpd = 49.153V
Icon = (Vsupply - Vpd) / Rthev = 1022mA
```


Conclusion

- The PSE contribution to system unbalance calculated using the values and methods from Draft 2.1 33B-4 is not in conformance with Icon-2p-unb from Table 33-19
- The system model in figure 33B-1 should define Pclass_PD at the PD PI
- Breaking the Rload resistances into Rpd and Rchan resistances and calculating Pclass_PD at the PD PI brings the unbalance calculations back into conformance

Replace Figure 33B-1

Replace Table 33B-1

PSE Class	Rpair_pd min	Rpair_pd max	Rpair_ch min	Rpair_ch max
5	0.623	1.518	0.1	0.11
6	0.523	1.179		
7	0.490	0.980		
8	0.444	0.875		
5	0.623	1.518	5.9375	6.25
6	0.523	1.179		
7	0.490	0.980		
8	0.444	0.875		

Replace Figure 33B-4

