Comment (clause 145.2.8.12 page 173 line 15)
Equation 145-22 for 4-pairs, defines the maximum current per pairset that PSE should source in order to keep Ptype_max for Type 4.

Simulation Results

Vpse at the PI $($ SIM $)$	PPD (SIM)	ICON-2P	Icon	Icon_cal	Icon- 2P_unb	SPEC D3.1
V	W	A	A	A	A	A
52 TO 52.11	99.9	1.2105	1.9245	1.921154	1.2105	1.3
		0.714				
		1.17	1.924			
		0.754				

Few issues to check:

1) The 1.3 A limit is too high. The value from simulations is:1.21.
2) Icon is expressed as Ptype max/Vpse which is correct however the 1.3 A value is a fixed number which its value impossible to happen due to the fact that the system current/resistance unbalance has almost the same value (~ 0.3) as in 90 W .
3) Actually, the 1.3 A value allows much higher effective Icon-2P_unb for 99.9 W . If we allow much higher Current during unbalance then the physics per the 4-pair model used for the spec allows, we may not meet the requirements at lower "normal" Pclass_PD.
4) Is it OK to have 1.3A on a pair while in Table 145-1 we allow up to 0.96A at 99.9W for 100% balanced system which has 1.21A maximum current unbalance at worst case conditions (not including test verification model accuracy).

Conclusions:

To consider lowering the value from 1.3 A to 1.25 A (The margin from 1.21A is to account for test verification model accuracy).

Group to discuss if there are other reasons for additional margins that Justify staying at
1.3A.

Proposed Remedy:

Change the value of the constant in Equation 145-22 from 1.3 to 1.25 if there is no additional arguments to keep the 1.3A value.

