

PI Balance Specifications Rev. 03

Ken Bennett Sifos Technologies, Inc. 802.3bt September 2014

Supporters:

Yair Darshan

Introduction

- Two options for PI Pair-to-pair balance specifications have been proposed:
 - P2PRunb = n, R_{min}, Vdiff (embedded or as a separate spec)
 - $\operatorname{Reff}_{max} \leq \operatorname{Reff}_{min} * x + y$
- This presentation provides some additional information on the derivation, properties and benefits of the Reff_{max} ≤ Reff_{min} * x + y option
- Changes to the standard incorporating this option are proposed

P2P Unbalance Specifications

Step 1: Set a target E2E P2P unbalance

Use Models, simulations to determine an acceptable worst case

PSE Channel **PD**
$$\implies \frac{\sum R_{max} - \sum R_{min}}{\sum R_{max} + \sum R_{min}} = E2ER_{unb}$$

Step 2: Define PI Requirements such that:

Target E2E P2P Unbalance is <u>never</u> exceeded Implementation independence is met: → No unnecessary restrictions or limits imposed

PI Specifications which meet the above requirements:

 $R_{PSEmax} \leq f(R_{PSEmin})$ $R_{PDmax} \leq f(R_{PDmin})$

Need to Solve for each f()

Derivation of PI Equations

The E2ERunb equation can be rearranged to the following form:

$$x\cdot \sum R_{min} - \sum R_{max} = \mathbf{0}$$
 , Where $x = rac{1+E2ER_{unb}}{1-E2ER_{unb}}$

Separating the contributors results in:

$$(x \cdot R_{PSEmin} - R_{PSEmax}) + (x \cdot R_{CHmin} - R_{CHmax}) + (x \cdot R_{PDmin} - R_{PDmax}) = 0$$

Each contributor is a constant in the worst case model:

$$C_{PSE} + C_{CH} + C_{PD} = 0$$

And any contributor can be solved for other implementations (PSE example shown below):

$$R_{PSEmax} - x \cdot R_{PSEmin} = C_{CH} + C_{PD}$$

Solving for Rmax results in:

$$R_{PSEmax} = x \cdot R_{PSEmin} + y_{pse}$$

Where:

X is a constant determined by the target balance, and y_{pse} is a constant determined by the other two contributors ($C_{CH} + C_{PD}$)

PI Specification Independence and Final expressions

From the previous slide:

 $(x \cdot R_{PSEmin} - R_{PSEmax}) + (x \cdot R_{CHmin} - R_{CHmax}) + (x \cdot R_{PDmin} - R_{PDmax}) = 0$

- Each contributor is a constant in the worst case model
- There are pairs of Rmax & Rmin that also equal that constant in each case
 - The Expressions for the other contributors are unaffected
 - The sets of Rmax & Rmin that satisfy this <u>are</u> the limits for PI implementations necessary to meet the target balance limit
- Contributors may have better balance without violating the target balance, so the equations may be expressed in the following form:

 $PSE_{max} \le x \cdot (PSE_{min}) + y_{pse}$ $PD_{max} \le x \cdot (PD_{min}) + y_{pd}$ $CH_{max} \le x \cdot (CH_{min}) + y_{ch}^{1}$

Where the final worst case model would provide the values for x and each y

1: Channel equation is included for discussion and is not a recommendation

Properties of the equations

- Simple expressions, described with 2 constants
 - Exactly fit the limits necessary to meet E2E P2P target balance
 - No unnecessary restrictions, No additional specs required
- PI specification independence
 - If any two contributors satisfy the equations, the third equation remains valid
- Can be used to scale WC Resistances up or down without affecting the equations for the other contributors
 - May be useful for test set-ups
- If a solution is not possible, the equation will indicate it
 - Ballast resistance (or Rmin limit) might be added to the WC model to improve target balance:
 - If low resistances in a given implementation can't provide the necessary ballast, the equation will not be solvable (Reff_{max} will be less than Reff_{min})

PSE PI Table 33-11 New Content for Types 3, 4

20	Current Unbalance	lunb	А	3% x lcable	1	See 33.2.7.11, 33.4.8. Note- For practical implementations, it is recommended that Type 1 PSEs support Type 2,3,4 Iunb requirements
				3% x Ipeak	2,3,4	
		lunb_ptp	A	TBD% x Ipeak	3,4	See 33.2.7.x. lunb_ptp is the current difference between two pairs of the same polarity

PSE Subsection Content

lunb_ptp shall be met at >85% of maximum PSE port capacity with the unbalanced resistive loads defined in 33-#2

Rpair_max = TBD, Rpair_min=TBD

Where the pair resistances are common mode resistances in the wire pairs of the same polarity, as shown in figure $33-\#_3$

lunb_ptp may be met with PSE PI effective resistances between pairs of the same polarity by conforming to equation $33-#_{\Delta}$:

$$Reff_{max} < Reff_{min} * TBD_x + TBD_{Ypse}$$
 33-#4

where $Reff_{max}$ and $Reff_{min}$ are maximum and minimum effective resistances determined at >85% of maximum port capacity. Each of the Reff parameters is the common mode effective resistance in the path of a twisted wire pair, including all PSE elements that are exclusively in the path of that wire pair.

* Rpair values and Equation 33-#4 are derived from worst case system models

33-#₂

Questions and Comments

Thank You

Annex: PD PI Specification Reff Test Method

PD Table 33-18 New Content for Types 3, 4

##	Current Unbalance	lunb_ptp	A		TBD% x Ipeak	3,4	See 33.3.7.x. lunb_ptp is the current difference between two pairs of the same polarity
----	-------------------	----------	---	--	--------------	-----	--

PD Subsection Content

33.3.7.x Pair-to-Pair Current Unbalance

lunb_ptp shall be met at >85% of maximum PD port operating Current Sourced through the unbalanced resistances defined in $33-#_5$

Rpair_max = TBD, Rpair_min=TBD

Where the pair resistances are common mode resistances in the wire pairs of the same polarity, as shown in figure $33-\#_6$

lunb_ptp may be met with PD PI effective resistances between pairs of the same polarity by conforming to equation 33-#₇:

$$Reff_{max} < Reff_{min} * TBD_x + TBD_{Ypd}$$
 33-#7

where $Reff_{max}$ and $Reff_{min}$ are maximum and minimum effective resistances determined at >85% of maximum port capacity. Each of the Reff parameters is the common mode effective resistance in the path of a twisted wire pair, including all PD elements that are exclusively in the path of that wire pair.

* Rpair values and Equation 33-#7 are derived from worst case system models

33-#₅

