1. Update table 33-11 item 7 as follows:

Item	Parameter	Symbol	Unit	Min	Max	PSE Type	Additional Information
7	Overload current per pair set, detection range	I CUT-2P	A	Pclass/Vport_PSE-2P	$\mathrm{I}_{\text {LIM }}$	1,2	Optional LIMIT; See 33.2.7.6, Table 33-7. K_icut3Kicut=: 0.596 for class 5 . 0.5560 .557 for class 6 . 0.539 for class 7. K_icut4 $=0.5380 .535$ for class 8 .
				Kicut3 Kicut X Pclass/Vport_PSE-2P		3,4	
				Kicut4X Pelass/Vport_PSE 2P		4	

End of Baseline Text

Notes:

The value for class 6 was updated from D1.1 due to round down error.
The value for class 8 was updated from D1.1 due to the changes made for Type 4 power from 71.3 W to 71 W .
The values for Class 5 and 7 are new. See Annex A and B for details.

Annex A: Derivation of Icut-2P

1. Icut_min- $2 \mathrm{P}=$ Icont- 2 P _unb by definition.
2. Worst case $\mathrm{P} 2 \mathrm{P}_{-}$Iunb conditions in Type 3 is at short cable (0.1Ω) and in Type 4 is at long cable (12.5Ω) therefore the ratio
Optimized_E2EP2P_Iunb_effect $=\frac{\text { Icont }-2 P_{-} \text {unb_max }}{\text { Icont }-2 \mathrm{P}_{-} \max }$ Can be used to set Pclass/Vport_PSE-2P at
E2EP2P_Iunb conditions, therefore:
Icont-2P_max $=0.5^{*}$ (Pclass/Vport_PSE_min)
Icont-2P_unb_max=Simulation results, the pair with maximum current from Rch=0.1 Ω to 12.5Ω

For Type 3 class 5:

Icut_min-2P = Icont-2P_unb= (Icont-2P_unb_max/Icont-2P_max)*0.5*Pclass/Vport_PSE-2P= $=(0.536 / 0.45))^{*} 0.5 *$ Pclass $/$ Vport_PSE-2P $=0.596 *$ Pclass $/$ Vport_PSE-2P.
For Type 3 class 6:
Icut_min- $2 \mathrm{P}=$ Icont-2P_unb $=(\text { Icont-2P_unb_max/Icont-2P_max })^{*} 0.5 *$ Pclass/Vport_PSE-2P $=$ $=(0.668 / 0.6) * 0.5 *$ Pclass $/$ Vport_PSE-2P $=\mathbf{0 . 5 5 6 0 . 5 5 7} *$ Pclass/Vport_PSE-2P.

For Type 4 class 7:

Icut_min- $2 \mathrm{P}=$ Icont-2P_unb $=($ Icont-2P_unb_max/Icont-2P_max $) * 0.5 *$ Pclass/Vport_PSE-2P $=$ $=(0.778 / 0.721) * 0.5 *$ Pclass $/$ Vport_PSE- $2 \mathrm{P}=\mathbf{0 . 5 3 9} *$ Pclass/Vport_PSE-2P.
For Type 4 class 8:
Icont-2P_unb $=(0.9310 .926 / 0.865) * 0.5 *$ Pclass/Vport_PSE-2P $=\mathbf{0 . 5 3 8 0 . 5 3 5 * P c l a s s / V p o r t _ P S E - 2 P ~}$ Notes:

1. All Kicut values are worst case ratio and not depend on Vport_PSE-2P. Generating Kicut as function of Vport_PSE-2P to reduce unnecessary margins in Icut_min is possible but not necessary and adds complexity.
2. As long as total system Vdiff stays 60 mV and we require the same Icon-2P_unb per class to be met with extended power mode, the Kicut ratio per class will remain the same for extended power

Annex B: Why changing D1.1 from Kicut3 and Kicut4 to Kicut per class.

The reason was to fix accuracy problems that were resulted with differences between Icut_min to Icont-2P_unb that must be the same value. The differences were occurred due to the usage of a constant that was calculated for Type 3 class 6 , to calculate Icut_2P min for class 5 which is incorrect. The same was for the constant that was calculated for Type 4 class 8 and was used to calculate Class 7 Icut-2P.

$\#$	Parameter	Class 5	Class 6	Class 7	Class 8
1	Icont-2P_unb	0.536	0.668	0.778	0.926
2	K_icut3 and K_icut4	0.557	0.557	0.535	0.535
3	Icut_min per the current constants K_icut3 and K_icut4 in D1.2 [A]	0.501	0.668	0.772	0.926
4	There is an error due to using constants of Type power for all classes instead of per class [A]	-0.035	0.000	-0.006	0.000
5	Changing to constants per class	0.596	0.557	0.539	0.535
6	New Icut_min=Kicut*Pclas/Vport_min [A]	0.536	0.668	0.778	0.925

We can see now that Icut_min=Icont-2P_unb as required (lines 1 and 6).

