Power Classes for PoDL

Andy Gardner

Linear Technology Corporation

Presentation Objectives

- Review the underlying constraints regarding the delivery of power to a PD through a series resistance.
- Propose workable voltage and current limits for PoDL power classes.

Basic PoDL Circuit Architecture

What Constrains the Maximum Power that can be Delivered by the PSE to the PD?

- PSE source voltage:
 - The higher the PSE source voltage (V_{PSE}) the higher the amount of power that can be delivered to the PD.
- PSE to PD loop resistance:
 - The higher the loop resistance, the lower the total amount of power that can be delivered to the PD.
 - For a given V_{PSE} and loop resistance (R_{Loop}), maximum PD power delivery occurs when 50% of V_{PSE} is dropped across R_{Loop} , i.e. $V_{PD}=V_{PSE}/2$.
- PSE/PD loop stability:
 - As a practical matter, a constant power PD requires that V_{PD} be significantly greater than 50% of V_{PSE} in order to ensure DC loop stability.

Simple Circuit Model for Analyzing DC Loop Stability*

*See darshan_3bu_1_0914.pdf for detailed analysis of DC loop stability.

V_{PD} vs. R_{Loop} Curves from Simple Circuit Model

PI Current vs. V_{PSE} for $P_{PD}=1W$, 2W, 5W, & 10W

Maximum R_{Loop} vs. V_{PSE} for P_{PD} =1W, 2W, 5W, & 10W

Example Load Scenario:

- $V_{PSE}=10V$, $P_{PD}=5W$, 15m of 26 AWG UTP @ 20°C, and 1 Ω of PSE source resistance yields:
 - $R_{Loop} = 15 \times 2 \times 0.14 \ \Omega/m + 1 \ \Omega = 5.2 \ \Omega$
 - Max R_{Loop} vs. V_{PSE} graph reveals that it is not possible to deliver 10W to the PD with this V_{PSE} and R_{Loop} !
- Increasing V_{PSE} to 14V for the above example yields:
 - 50% drop when $R_{Loop} = 9.80 \Omega$
 - 20% drop when $R_{Loop} = 6.27 \Omega$
 - $I_{PI} = 0.714A$ for a 50% R_{Loop} drop*
 - $I_{PI} = 0.446A$ for a 20% $R_{Loop} drop^*$

*Coupling inductors' saturation current must be greater than I_{PI} to ensure data integrity.

Proposed Class Table

System Class									
R_{Loop} loss	I	I	Ш	Ш	III	III	IV	V	VI
20%	(5V)	(12V)	(12V)	(24V)	(24V)	(48V)	(48V)	(48V)	(Open)
*V _{PSE(max)} (V)	5.5	14	14	28	28	56	56	56	-
*V _{PSE(min)} (V)	4.75	9	9	18	18	36	36	36	-
I _{PI(max)} (A)	0.53	0.28	0.69	0.35	0.69	0.35	0.87	2.08	-
** $R_{Loop(max)}\left(\Omega\right)$	1.8	6.5	2.6	10.4	5.2	20.7	8.3	3.5	-
***P _{PD(max)} (W)	2	2	5	5	10	10	25	60	-
****P _{PSE} (W)	2.5	2.5	6.25	6.25	12.5	12.5	31.25	75	-
V _{PD(min)} (V)	3.8	7.2	7.2	14.4	14.4	28.8	28.8	28.8	-

*V_{PSE} is the open circuit voltage measured at the PSE PI.

**R_{Loop} is defined as the sum of the PSE source resistance and link segment round trip resistance.

***P_{PD} is measured at the PD PI.

****P_{PSE} does not include power dissipated by the PSE source resistance.

Questions?

TECHNOLOGY

Motion

- Adopt the class table proposed in gardner_3bu_1_0315a.pdf.
 - Y:
 - N:
 - A:

