A Quick Walk Around the Block with PoDL

Dogs at the IEEE?

Dave Dwelley P802.3bu PoDL Chair

Version 1.1

IEEE P802.3bu Power over Data Lines Tutorial – November 2015 IEEE 802.3 Plenary

Agenda

- What is PoDL?
- Why do we need another PoE?
- Quick Overview of PoDL Operation
- Summary of PAR/5C/Objectives
- Walk Through the Draft

PoDL = PoE for Single-Pair Ethernet

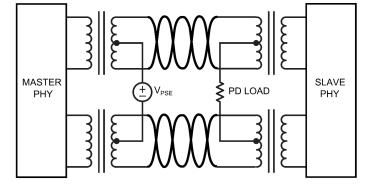
- Power + Data over the same cable
 - No wall warts, no AC wiring
- PoDL + 100BASE-T1: 100M and power over a single 24ga twisted pair
- PoDL + 1000BASE-T1: Same but gigabit
- PoDL is generic enough that it will work with future speeds and reaches
 - High-voltage (48V) classes enable long-reach applications
 - High power (up to 50W) classes support future high-speed PHYs with real applications

Why PoDL Matters

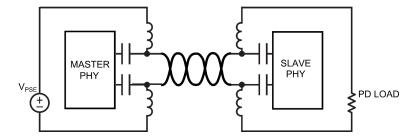
- Small, single-pair Ethernet devices (notably cameras) need power as well as data
- Two ways to get power to the device:
 - Send power over the same wires
 - Send power over a second pair of wires
- Second pair enables 2-pair Ethernet (10BASE-T or 100BASE-TX) but uses twice as much wire
 - Adds weight, cost, and size
 - Undesirable when the data center (i.e., the car) is moving
 - This is why we did the T1 Ethernet specs

Why Can't We Use PoE?

 PoE requires (at least) two pairs to work


PoDL requires only one pair

bandsplitting network

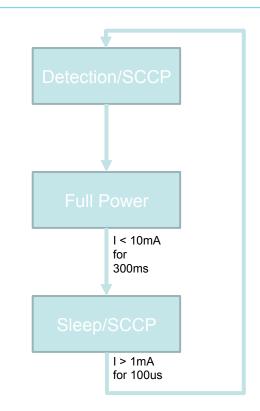

Connected between pair center tap

Connected with a lowpass/highpass

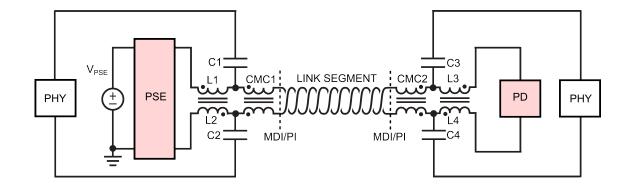
· Works with single-pair Ethernet

Power over Ethernet (PoE)

Power over Data Lines (PoDL)


PoDL Overview for Data Folks

- A **PSE** puts power on the link; a **PD** draws power from the link
- The PSE tests the link using **Detection** before turning on power
 - It checks for a ~4V zener with a ~10mA test current
- Found a PD? Now it asks how much power it wants using Serial Communication Classification Protocol (SCCP)
 - Low-speed, self-powered, bidirectional serial protocol that operates in the low-pass power band
 - Exception: the PSE can skip SCCP if it knows in advance what the PD is (like in an automotive wiring harness): this is Fast Startup Mode
- If the PSE likes what it sees, it turns on the power
 - Up to 5W at 12V or 50W at 48V


Sleep Mode

- When not providing full power, the PSE continuously provides 3.3V to the PD at <1mA: this is Sleep Mode
- Sleep Mode allows battery powered systems (i.e., parked cars) to maintain minimal functionality with low power draw (with PHYs asleep or powered off)
 - PHY may use EEE or other sleep modes
- Both PSE and PD enter or leave sleep mode together
- Either the PSE or PD can cause the system to enter or leave Sleep Mode
- SCCP works in Sleep Mode

Interaction with Data

- PoDL affects the channel via the coupling network
 - Return loss and mode conversion are affected by the inductors
 - dv/dt, di/dt, and power supply noise can also affect data
 - Limits are in Clause 104

IEEE P802.3bu Power over Data Lines Tutorial – November 2015 IEEE 802.3 Plenary

PAR and 5C

- P802.3bu meets all PAR requirements and 5 Criteria
- Technically and economically feasible for the automotive market
 - This pretty much ensures economic feasibility for any other market...
- Scalable to other applications
 - Transportation
 - Industrial
 - IoT
 - Pretty much anywhere 802.3bp or 802.3bw are useful

Objectives

- Specify a power distribution technique for use over a single twisted pair link segment. (104.1)
- Allow for operation if data is not present. (throughout Clause 104)
- Support voltage and current levels for the automotive, transportation, and industrial control industries. (Table 104-1)
- Do not preclude compliance with standards used in automotive, transportation, and industrial control industries when applicable. (104.5)
- Support fast-startup operation using predetermined voltage/current configurations and optional operation with run-time voltage/current configuration. (104.3.5, Figure 104-4)
- Ensure compatibility with IEEE P802.3bp (e.g., EMI, channel definition, noise requirements). (104.5.3)

A Brisk Walk Through the Draft

▶ 1. Introduction

30. Management

- 45. Management Data Input/Output (MDIO) Interface
- ▼ 104. Single-Pair Power over Data Lines (PoDL)
 - ▶ 104.1 Overview
 - 104.2 Link segment
 - ▶ 104.3 Power sourcing equipment (PSE)
 - ▶ 104.4 Powered Device (PD)
 - ▶ 104.5 Additional electrical specifications
 - 104.6 Serial communication classification protoc...
 - 104.7 Protocol implementation conformance stat...

Annex 104A

```
PSE-PD Stability
```

- Clause 1: New definitions
 - 5 new definitions, 1 new abbreviation
- Clause 30, 45: New management sections
 - Added oPoDLPSE and Attributes to Clause 30
 - Added MDIO registers to Clause 45
- Clause 104: the heart of PoDL
 - Document structure modeled on Clause 33 (PoE)

Clause 104: Where the PoDL Lives

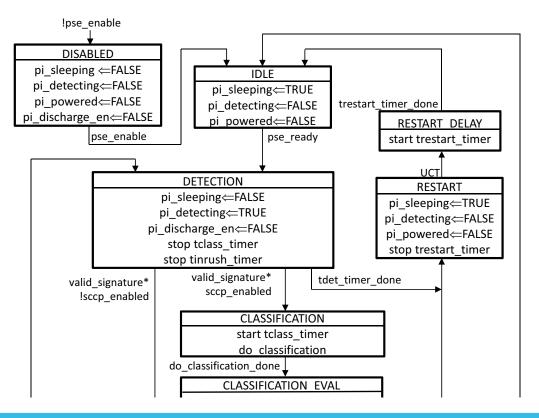
- Only 28 pages long (not counting PICS and Clauses 1, 30, and 45)
 - Easy reading...
- Key electrical information is in 3 sections (19 pages)
 - 104.2 Link Section (and power levels)
 - 104.3 PSE (Power Sourcing Equipment, puts power on the link)
 - 104.4 PD (Powered Device, draws power from the link)
- SCCP (analogous to PoE Classification) is broken out separately in 104.6 (7 pages)
 - SCCP is optional for Fast Mode systems (most automotive systems)
 - SCCP is a little more complicated than the rest of PoDL
 - Based on an existing industry-standard protocol

104.1: Overview

- Compatibility, relationship to the rest of 802.3
 - Specs are defined at the PI (equivalent to the MDI)
 - All PoDL devices are compatible (they won't damage each other)
 - Not necessarily interoperable: see Types, below
- Definitions of PoDL Types
 - Same PoDL hardware, different coupling network bandwidth only
 - Type A: cost optimized for 100BASE-T1
 - Type B: cost optimized for 1000BASE-T1
 - Type A+B: works with both

104.2: Link Segment Section

- "Link Section" is defined in Clause 1 (originally by PoE) as a link segment that also carries power
- Specifies allowable loop resistance (matches 100/1000BASE-T1 links)
 - Compatible with 100/1000BASE-T1 links
 - PoDL isn't sensitive to any other channel parameters
- Table 104-1 (Class Power Requirements) lives here
 - PoDL Class defines operating voltage and power level


Class	0					5	6		8	9
Voltage	5.5- 18		14-18	14-18	12-36	12-36	26-36	26-36	48-60	48-60
Current, A	0.1 0	0.22	0.25	0.47	0.10	0.34	0.21	0.46	0.73	1.3
PD power	0.5	1	3	5	1	3	5	10	30	50

104.3: PSE = Power Sourcing Equipment

- Puts power on the link
 - Usually located in an Ethernet switch
- .3.3, Figure 104-4: State Diagram
- .3.4: Detection details
 - How the PSE knows when to turn on the power
- .3.5: Classification overview (mostly a reference to 104.6)
 - How much power to supply
 - Classification is optional, omitted in Fast Startup mode
- .3.7: Power removal and Maintain Full Voltage Signature (MFVS)
 - When to remove power and return to Sleep or detection mode

104.3.3: PSE State Diagram

Figure 104-4

Version 1.1

IEEE P802.3bu Power over Data Lines Tutorial - November 2015 IEEE 802.3 Plenary

104.3.6: PSE Power Details

•	Table 104-3 is the
	"heart" of the PSE spec:
	voltage, current, timing
	requirements

Item	Parameter	Symbol	Unit	Min	Max	Class	Туре	Additional Information
1	DC output voltage during POWER_ON state	V _{PSE(PON)}	V	Class V _{PSE(min)}	Class V _{PSE(max)}	All	All	See 104.3.6.1 and Table 104–1
2	Continuous output current capability in POWER_ON state		A	P _{Class} /V _{Port} PSE				See Table 104–1
3	Output voltage dV/dt	$\left dV_{PSE} / dt \right $	V/ms		22	All	А	See
					200	All	В	104.3.6.1
4	Power feeding ripple and	noise:						
	1kHz <f<10mhz< td=""><td></td><td>V_{p-p}</td><td></td><td></td><td></td><td>А</td><td>See 104.3.6.3</td></f<10mhz<>		V _{p-p}				А	See 104.3.6.3
					$\frac{0.2}{\sqrt{1 + \left(\frac{f}{50 kHz}\right)^2}}$			

Table 104–3—PSE output requirements

104.4: PD = Powered Device

- Draws power from the link
 - Usually a leaf node: camera, industrial sensor, IoT device
- .4.3, Figure 104-6: State Diagram
- .4.4: Detection Signature
- .4.5: Classification overview (pointer to 104.6)
- .4.7: Maintain Full Voltage Signature details
 - What the PD must do to stay powered

104.4.3: PD State Diagram

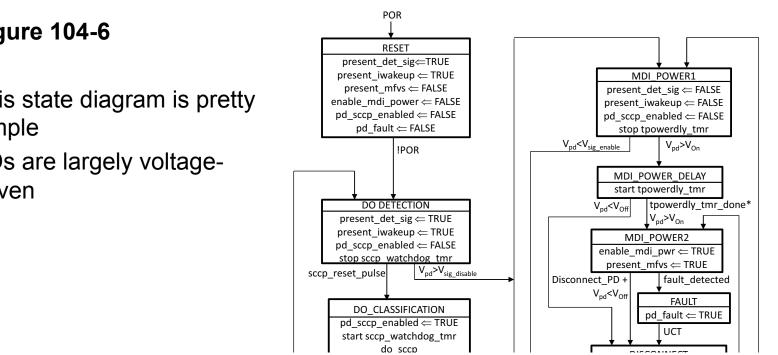


Figure 104–6—PD state diagram

- **Figure 104-6**
- This state diagram is pretty • simple
- · PDs are largely voltagedriven

IEEE P802.3bu Power over Data Lines Tutorial – November 2015 IEEE 802.3 Plenary

104.4.6: PD Power Details

- .4.6: Power details
 - Table 104-6 has key PD electrical and timing specs

Item	Parameter	Symbol	Unit	Min	Max	PD Type	Additional Information
1	Input current dI/dt		A/ms		1	А	See 104.4.6.3
					10	В	
2	Input voltage dV/dt		V/ms		20	А	
					200	В	
3	Ripple current						
	1kHz <f<10mhz< td=""><td></td><td>A_{p-p}</td><td></td><td>100Hz/f</td><td>А</td><td>See 104.3.6.3</td></f<10mhz<>		A _{p-p}		100Hz/f	А	See 104.3.6.3
					1000Hz/f	В	

Table 104–6—PD power supply limits

Version 1.1

IEEE P802.3bu Power over Data Lines Tutorial – November 2015 IEEE 802.3 Plenary

104.5: Additional Electrical Specs

- .5.1: Isolation requirements
 - PD isolated from chassis ground
 - PSE isolation is optional
- .5.2: Fault tolerance
 - Short circuits can't blow anything up

• .5.3: T1 MDI Spec Modifications

- Revised lower limits for 100/1000BASE-T1 Return Loss specs
- Allows for practical, compact PoDL coupling networks (smaller, lower value inductors)
- These specs ended up in Clause 104 because the data clauses were complete when this was
 added

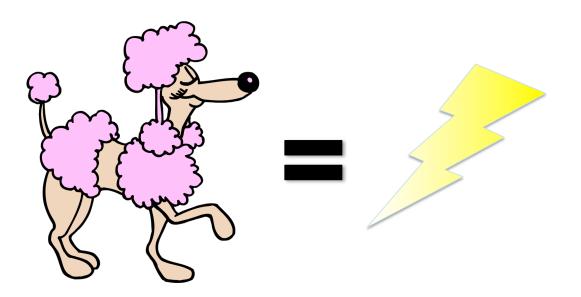
104.6: SCCP

• SCCP = Serial Communications Classification Protocol

- Indicates PD voltage and power requirements to the PSE before it turns on the power
- PoDL equivalent of PoE Classification pulses
- Only works when power is off or in Sleep Mode
- Fairly comprehensive low-speed (333bps) serial protocol
 - Based on a subset of the 20-year-old Maxim 1-Wiretm serial protocol
- SCCP is optional for Fast Startup Mode (engineered network) systems

104.7: PICS

104.7.4.2 Power sourcing equipment (PSE)


• No surprises here...

Item	Feature	Subclause	Status	Support	Value/Comment
PSE1	Voltage and power requirements	104.3.2	М	Yes []	As defined in Table 104–1 for each relevant system class
PSE2	PSE behavior	104.3.3	М	Yes []	In accordance with state diagram shown in Figure 104– 4
PSE3	external_wakeup variable	104.3.3.3	М	Yes []	Re-detect the PD before re- applying the full operating voltage to the PI after request is received
PSE4	pd_wakeup varibale	104.3.3.3	М	Yes []	Re-detect the PD before re- applying the full operating voltage to the PI after valid current signature at the PI is detected
PSE5	pi_powered variable	104.3.3.3	М	Yes []	If false, do not apply power to the PI. If True, apply power to the PI
PSE6	sleep_detected variable	104.3.3.3	М	Yes []	Transition to SLEEP state when the average value of I_{port} is less than or equal to I_{sleep} threshold
PSF7	wakeun detected variable	104333	М	Ves []	TRD

Version 1.1

IEEE P802.3bu Power over Data Lines Tutorial - November 2015 IEEE 802.3 Plenary

Thank You and Happy Commenting!

Version 1.1

IEEE P802.3bu Power over Data Lines Tutorial – November 2015 IEEE 802.3 Plenary