Power Matters

IEEE802.3bu PoDL Requirements Derived from System Model September 2014

Yair Darshan Microsemi

Objectives

- To discuss a list of requirements from PSE and PD in automotive applications that are derived from The General Case of Remote Power Feeding Model.
 - Ensuring system stability
 - PD Under Voltage Lock Out (UVLO)
 - Source voltage vs. Wire size and Load power
 - Optimization of wire size vs. system parameters
 - Different PSE voltages vs. Single voltage
 - The need for classification
 - Compensation of wire drop
 - Addressing cold crank
 - Active current limit in PSE vs. Fuse
 - Wire optimization
 - Transformer core optimization
 - Stability
 - Protection against excess energy in Inductor interface or during faults
 - Reporting of faults

System Power Model – The general case

- Rs=Power Source output resistance
- L= Cable length with a resistance of Rc=R1+R2=Cable round loop resistance
- R=Total loop resistance=Rs+R1+R2 is the actual source output resistance of the voltage source Vs.

If $Vs^2 >>4*R*PL$ than VL=~Vs as we used too or in general VL=Vs - I*R. So if it is working for you, it is understood why based on the model above.

Ensuring system Stability – Working on upper curve

• The above curve shows:

• Two solutions for VL for given PL. We must work on the higher VL value curve.

Ensuring system Stability - Example

- If operation is required at:
 - Vbat=Vs= 9V min. AND
 - 15m cable with 0.126Ω/m wire AND Rs=0.2 Ω (add 40% to the resistance at 125°C from 20 °C) AND Load input power PL is 4W
- Then:
 - R=2*15m* 0.126Ω/m *1.4+0.2 Ω=~5.5 Ω
 - (Vs²-4*R*PL)^{0.5}=(9²-4*5.5 Ω *4W)^{0.5}=(-7)^{0.5} negative root → VL below stability point and will stay there → will not work.
 - Remedy:
 - Reduce load or Cable length <u>OR</u> Increase Vs or wire diameter

Ensuring system Stability – Why UVLO is required?

• The above curve shows:

- Why UVLO is a must at DC/DC on load side?
 - To ensure staying at upper value during startup and bus transient voltages
 - PD starts to work at Von
 - PD is OFF at Voff
 - Von>Voff

Ensuring system Stability–Minimum source Voltage Source voltage vs. Wire size and Load power

• To be in stable operating point we need: $Vs^2 - 4 \cdot R \cdot P_L > 0$

- As a result, Minimum source voltage is: $V_S > \sqrt{4 \cdot R \cdot P_I}$
- Different Vs for different loads and wire resistance

Ensuring system Stability

Why UVLO in a PD is a must. Why current limit protection (preferred active one) is required.

- The above curve shows:
 - Why UVLO is a must at DC/DC on load side we already answer it.
 - We must work on the "negative" solution of IL hence
 - UVLO at the PD is a must
 - Current limiter is recommended (in addition to other faults)
 - Allows wire size optimization and adaptation to different source voltages

Optimization of wire size vs. system parameters

- There is an objective to use less copper → lower weight etc.
- Wire size can be optimized by:

$$R < \frac{Vs^2}{4 \cdot P_L}$$

- In order to protect infrastructure and equipment we can use Fuse or active current limit.
 - Fuse need high margin from nominal working current.
 - Active current limit
 - automatic reset
 - easy testing
 - Programmable per power/voltage class
 - Easy fault reporting

System Stability – Maximum load power

- PL_practical < Pmax =Vs^2/(4*R) → Vs_min>(4*R*PL_practical)^0.5
- How to exactly determine Vs_min? See design equations next slides
- Active Current limiter device between source voltage and load is recommended

How to exactly determine PL_practical and Vs_min?

- The not optimized way. We use large wire diameter, reducing R.
 - 4*R*PL<<Vs^2, → PL<< Pmax. Equation converge to simple VL=Vs-IL*R. All is working.
- For optimizing the cable size, weight and cost
 - $4*R*P_{<}Vs^{2}$, $\rightarrow P_{<}Pmax$, but were exactly?
 - The analytical way is to limit cable power loss, Pc. so K=PL/Ps=PL /(PL+Pc) (Load/Source power ratio) will be lower than 80%. Typical K≥0.8 is reasonable.
 - Set Pc≤PL*(1/K-1).
 - Once Pc is set, I_L can be derived (Pc/R)^0.5 and then the rest of system parameters. In this way, PL will be below Pmax.
- There are other optimization methods. All of them will results with similar/close results.
- See annex A for detailed optimization derivation

Vs_min vs. PL and cable length

Ppd_in	1	1.5	2	3	4	5	6	7	8	9	10
L=3.5	4.2	5.1	5.9	7.3	8.4	9.4 <mark></mark>	10.3	11.1	11.9	12.6	13.3
L=15	7	8.6	10	12.2	14	16	17.3	18.7	20	21.2	22.3
L=40	11	13.4	15.5	19	22	24.4	26.8	28.9	31	32.9	34.6

Table 1: Vs_min v.s. Cable length and PD input power. Vs_min=9V area is enclosed with red dashed line.

Ppd_in	1	1.5	2	3	4	5	6	7	8	9	10
L=3.5	4.2	5.1	5.9	7.3	8.4	9.4	10.3	11.1	11.9	12.6	13.3
L=15	7	8.6	10	12.2	14	16	17.3	18.7	20	21.2	22.3
L=40	11	13.4	15.5	19	22	24.4	26.8	28.9	31	32.9	34.6

Table 2: Vs_min v.s. Cable length and PD input power. Vs_min=16V area is enclosed with red dashed line.

For a wire with $0.126\Omega/m$, k=0.85:

•16V minimum will support all power range at L=3.5m, 5W at L=15m and 2W at L=40m (Table 2)

•Above 9V, a DC/DC is required to boost voltage for PL>4W (Table 1)

Different PSE voltages vs. Single voltage

- We need design flexibility and system cost optimization
- We saw that for different sets of load power and wire resistance we need different minimum source voltage for:
 - Ensuring stability
 - Compensation of wire drop
 - Addressing cold crank scenarios
- It generate the need for classification
 - Classification may be implemented by L1 methods or
 - Low frequency single wire communication type.
 - See example at : <u>http://www.ieee802.org/3/bu/public/sep14/gardner_3bu_1_0914.pdf</u>

Active current limit in PSE vs. Fuse

- Active current limit helps with:
 - Wire optimization
 - Transformer core optimization
 - Stability
 - Protection against excess energy in Inductor during transient events / loose connection or other faults.

Reporting of faults

 To be discuss the need for fault reporting and the means to do it.

Conclusions

- UVLO at load side DC/DC is a must (Von>Voff)
- Active Current Limiter at the power source side is highly recommended for:
 - Reliable deterministic and controlled operation
 - Optimized cable diameter, transformers etc. and not oversized it
- Different minimum source voltage is needed to be guaranteed for a given load power and cable resistance (length, diameter).
 - As a result classification function is required for cost optimization.
- The need and the means for faults report need to be discussed.

Backup slides

Annex A: Calculation Procedure – Vs_min derivation

- R=Total Round Loop cable resistance including source resistance
- PL is the power measured at the input of the load. It is already include DC/DC efficiency and the load connected to the DC/DC.
- Pc is the maximum cable power loss. It sets K=PL/Ps=PL/(PL+Pc) to be <0.8. This is a realistic number and normally required. (K is not DC/DC efficiency!). Limiting Pc ensures Load voltage VL>Vs/2 for stable operation (See curves in previous slides).
- As a result, for given K we can compute Pc directly from maximum load power PL. K=PL/Ps. K=PL/(PL+Pc). → Pc=PL*(1/K-1).
- R and Pc are known hence maximum channel DC current can be computed: Pc=R*I^2 → I_max=(Pc/R)^0.5
- Minimum load voltage can be calculated since P=VL*I → VL_min=PL/I
- The minimum source voltage can be calculated :Vs_min=VL_min+I*R
- Design margins and temperature effects are not included above. To address it, it is required to set R at maximum system operating temperature and add additional design margin (10%) to the resultant Vs_min to account for +/-5% power supply tolerance.

Vs_min for L=3.5m with 0.05, 0.089, 0.126 Ω /m wire vs. load power Ppd=PL

The following slides show the requirements for minimum source voltage required to supply load power (Ppd=PL) for given wire size and cable length.

TA=125°C. k=0.85. Ppd=PL is measured at the device input which reflects sensor power and its DC/DC efficiency.

Vs_min for L=15m with 0.05, 0.089, 0.126 Ω /m wire vs. load power Ppd=PL

TA=125°C. k=0.85. Ppd=PL is measured at the device input which reflects sensor power and its DC/DC efficiency.

Vs_min for L=40m with 0.05, 0.089, 0.126 Ω /m wire vs. load power Ppd=PL

TA=125°C. k=0.85. Ppd=PL is measured at the device input which reflects sensor power and its DC/DC efficiency.

Basic use case concept

Objectives http://www.ieee802.org/3/bu/P802d3bu_Objectives.pdf

- Specify a power distribution technique for use over a single twisted pair link segment.
- Allow for operation if data is not present.
- Support voltage and current levels for the automotive, transportation, and industrial control industries.
- Do not preclude compliance with standards used in automotive, transportation, and industrial control industries when applicable.
- Support fast-startup operation using predetermined voltage/current configurations and optional operation with run-time voltage/current configuration.
- Ensure compatibility with IEEE P802.3bp (e.g., EMI, channel definition, noise requirements).

