Test mode 6 autocorrelation improvement

Rubén Pérez-Aranda
(rubenpda@kdpof.com)

Current test mode 6 definition on P802.3bv/D3.1

- Autocorrelation of test mode 6 signal according to 115.5.6:

Proposal for P802.3bv/D3.2 - definition I

115.5.6 Test mode 6

When test mode 6 is enabled, the PMA shall transmit the sequence of symbols s_{n} generated by the scrambler generator polynomials per Equation (115-25) and Equation (115-26).

$$
\begin{align*}
& g_{0}(x)=1+x^{9}+x^{11} \tag{115-25}\\
& g_{1}(x)=1+x^{7}+x^{9}+x^{10}+x^{11} \tag{115-26}
\end{align*}
$$

The two maximum-length shift registers used to generate the sequences defined by these polynomials shall be updated once per symbol interval (nominally $1000 / 325 \mathrm{~ns}$). The reset value of both shift registers shall be 0 x 7 FF , so the content of both registers start aligned to all ones when the PHY is configured to generate the test mode 6 pattern.

The bits stored in the shift register at a particular time n are denoted $\operatorname{Scr}_{n}[10: 0]$ for the scrambler defined per Equation (115-25). At each symbol period this shift register is advanced by one bit and one new bit represented by $\operatorname{Scr} 0_{n}[0]$ is generated. Bits $\operatorname{ScrO}_{n}[8]$ and $\operatorname{Scr} 0_{n}[10]$ are exclusive OR'd together to generate the next $\operatorname{Scr} 0_{n}[0]$ bit.

The bits stored in the shift register at a particular time n are denoted $\operatorname{Scr} 1_{n}[10: 0]$ for the scrambler defined per Equation (115-26). At each symbol period this shift register is advanced by one bit and one new bit

Proposal for P802.3bv/D3.2 - definition II

represented by $\operatorname{Scr} 1_{n}[0]$ is generated. Bits $\operatorname{Scr} 1_{n}[10], \operatorname{Scr} 1_{n}[9], \operatorname{Scr} 1_{n}$ [8], and $\operatorname{Scr} 1_{n}[6]$ are exclusive OR'd together to generate the next $S_{c r}{ }_{n}[0]$ bit.

The bit sequences $x 00_{n}, x 01_{n}, x 02_{n}$, and $x 03_{n}$ generated from combinations of bits of the two scramblers shall be used to generate the PAM16 symbols, $y 0_{n}$, according to Equation (115-27).

$$
\begin{gather*}
x 00_{n}=\operatorname{Scr} 1_{n}[0] \\
x 01_{n}=\operatorname{Scr} 1_{n}[1] \wedge \operatorname{Scr} 0_{n}[4] \\
x 02_{n}=\operatorname{Scr} 1_{n}[2] \wedge \operatorname{Scr} 0_{n}[9] \tag{115-27}\\
x 03_{n}=\operatorname{Scr} 1_{n}[0] \wedge \operatorname{Scr} 0_{n}[10] \\
y 0_{n}=x 00_{n}+2 \times x 01_{n}+4 \times x 02_{n}+8 \times x 03_{n}
\end{gather*}
$$

The bit sequences $x 10_{n}, x 11_{n}, x 12_{n}$, and $x 13_{n}$ generated from combinations of bits of the two scramblers shall be used to generate the PAM16 symbols, $y 1_{n}$, according to Equation (115-28).

$$
\begin{gather*}
x 10_{n}=\operatorname{Scr} 0_{n}[0] \\
x 11_{n}=\operatorname{Scr} 0_{n}[1] \wedge \operatorname{Scr} 1_{n}[4] \\
x 12_{n}=\operatorname{Scr} 0_{n}[2] \wedge \operatorname{Scr} 1_{n}[9] \tag{115-28}\\
x 13_{n}=\operatorname{Scr} 0_{n}[0] \wedge \operatorname{Scr} 1_{n}[10] \\
y 1_{n}=x 10_{n}+2 \times x 11_{n}+4 \times x 12_{n}+8 \times x 13_{n}
\end{gather*}
$$

From $y 0_{n}$ and $y 1_{n}$, the PAM256 symbols s_{n} shall be generated according to Equation (115-29). The transmitter shall time the transmit symbols s_{n} from its local symbol clock.

$$
\begin{equation*}
s_{n}=\frac{1}{256}\left(2 \times\left(16 \times y 0_{n}+y 1_{n}\right)-255\right) \tag{115-29}
\end{equation*}
$$

Proposal for P802.3bv/D3.2 - Matlab code

```
% Generate the reference test signal pattern for test mode 6
function tm6 = tm6gen()
    Ns = 2^11 - 1;
    scr1 = lfsrgen([1 9 11], Ns, '7FF').';
    scr2 = lfsrgen([1 7 9 10 11], Ns, '7FF').';
    x1 = [circshift(scr2, 0)
        mod((circshift(scr2, 1) + circshift(scr1, 4)), 2), ...
        mod((circshift(scr2, 2) + circshift(scr1, 9)), 2), ...
        mod((circshift(scr2, 0) + circshift(scr1, 10)), 2)];
    y1 = x1(:,1) + 2*x1(:,2) + 4*x1(:,3) + 8*x1(:,4);
    x2 = [circshift(scr1, 0),
        mod((circshift(scr1, 1) + circshift(scr2, 4)), 2), ...
        mod((circshift(scr1, 2) + circshift(scr2, 9)), 2), ...
        mod((circshift(scr1, 0) + circshift(scr2, 10)), 2)];
    y2 = x2(:,1) + 2*x2(:,2) + 4*x2(:,3) + 8*x2(:,4);
    tm6 = ((2*(16*y1 + y2) - 255)/256).';
end
```


Proposal for P802.3bv/D3.2 - autocorrelation

- Autocorrelation of proposed improved test mode 6 signal:

