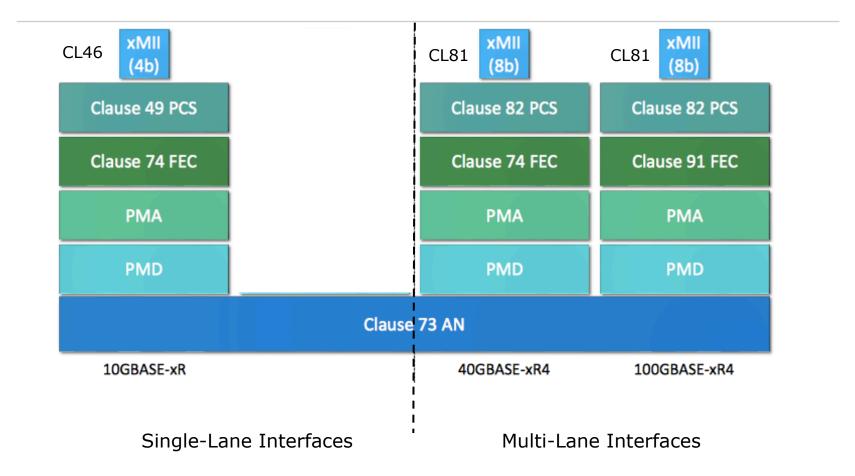
Background on 25GbE PCS/FEC Baseline Proposal (baden_3by_01b_0115)

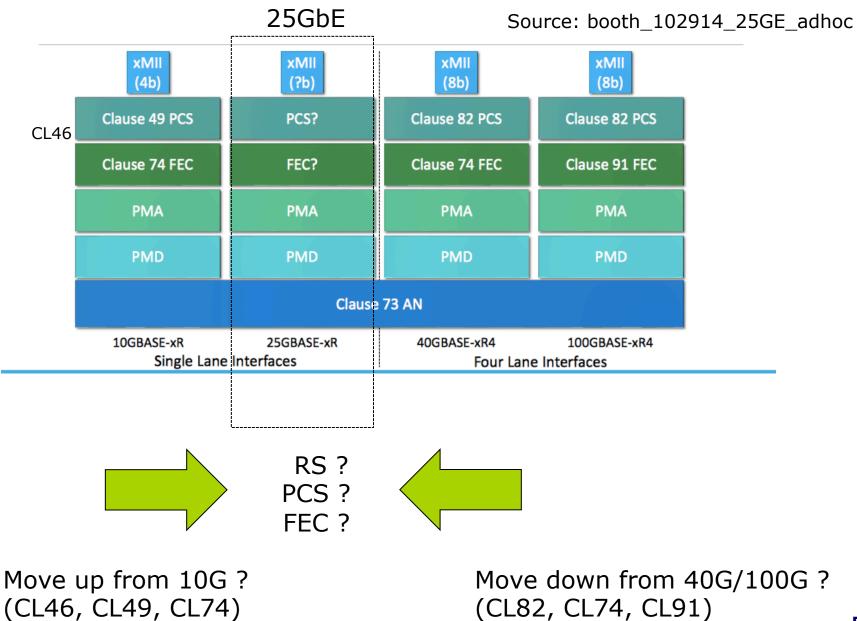
Gary Nicholl, Cisco; Eric Baden, Broadcom

IEEE 802.3by TF, Atlanta, Jan 14-16, 2015

Introduction


- The candidate baseline proposal for 25GbE RS/PCS/ FEC (baden_3by_01b_0115) is the culmination of several earlier contributions which were presented and discussed at several 25GbE architecture ad-hoc calls and study group meetings.
- This presentation provides a reference to those contributions, and a brief overview of some of the key reasoning which led to the baseline proposal in baden_3by_01b_0115.

References

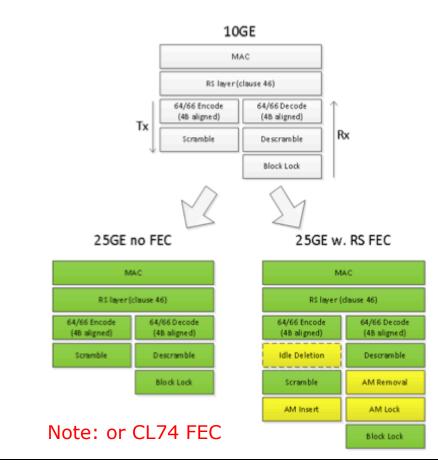

- Current baseline proposal:
 - <u>http://www.ieee802.org/3/by/public/Jan15/baden_3by_01b_0115.pdf</u>
- Previous related presentations:
 - <u>http://www.ieee802.org/3/25GSG/public/adhoc/architecture/kim_100114_25GE_adhoc.pdf</u>
 - <u>http://www.ieee802.org/3/25GSG/public/adhoc/architecture/kim_100814_25GE_adhoc.pdf</u>
 - <u>http://www.ieee802.org/3/25GSG/public/adhoc/architecture/</u> booth_102914_25GE_adhoc.pdf
 - <u>http://www.ieee802.org/3/25GSG/public/Nov14/</u> baden_25GE_01a_1114.pdf
 - <u>http://www.ieee802.org/3/by/public/adhoc/architecture/</u> <u>baden_121714_25GE_adhoc.pdf</u>

Starting point

Source: booth_102914_25GE_adhoc

Starting point

Application Review

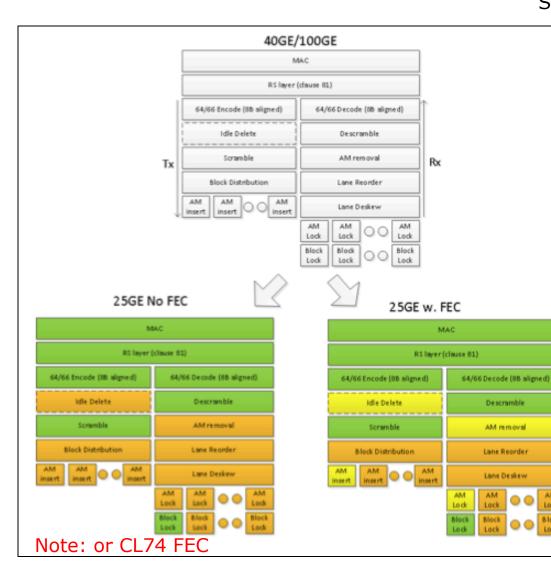

Source: booth_102914_25GE_adhoc

- 10/25 NIC (lion's share of market ?)
 - primarily copper (and < 3m ?)
 - only ever needs to support single lane solution
 - likely SFP28 based
- 10/25/40 NIC
 - primarily copper
 - also needs to support multi-lane PCS (due to 40G)
 - likely QSFP based (but not a good fit for 10G/25G?)
 - how likely is this due to connector mismatch (SFP v QSFP)
- 10/25/40/100 Switch
 - switch ports more likely to be multi-rate
 - therefore will have all PCS (single and multi-lane) and FEC versions available
 - likely QSFP28 based (/w breakout for 10/25 support)

PCS - Scaling up from 10G ?

Source: kim_100814_25GE_adhoc

25GE PCS using 10GE (CL49) building blocks


- 4 byte MII (CL46)
- For a 25GE without FEC can use 10GE function as is, i.e. complete reuse (simply run 2.5x faster).
- To aid RS FEC, would add alignment marker insertion and removal in the 25GE PCS. (yellow blocks)

Note: in latest proposal AM insertion moved to RS-FEC block (see later)

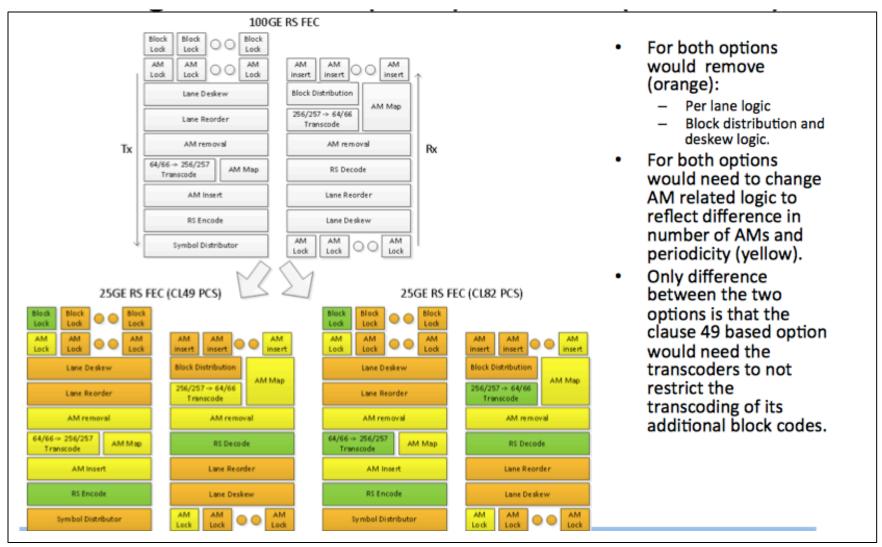
Simplest implementation for 10/25G NIC

PCS - Scaling down from 40/100G ?

Source: kim_100814_25GE_adhoc

- 8 byte MII (CL81).
- Some function reuse, however would remove (orange blocks):
 - multiple per lane logic
 - block distribution and reorder/deskew.
 - AM insertion/removal logic would need to change (yellow blocks) in order to reflect different rates of AM insertion/ removal

Note: in latest proposal AM insertion moved to RS-FEC block (see later)

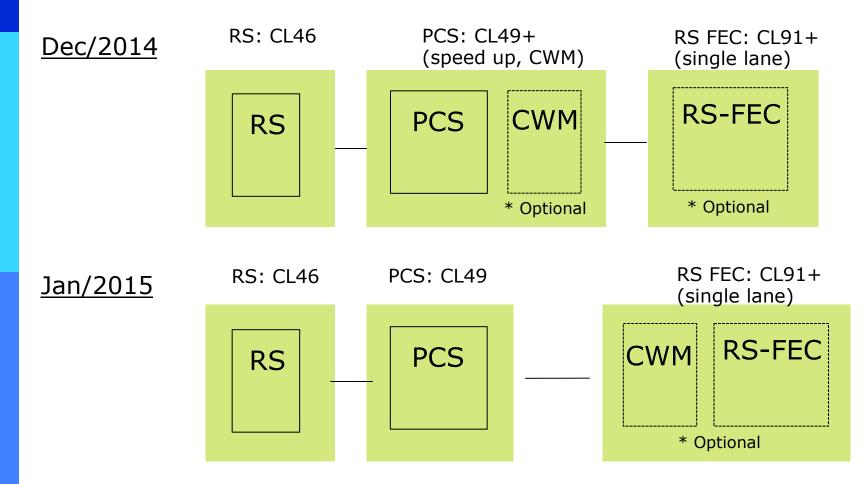

Need to change multi-lane arch to single lane arch

AM

Lock

RS-FEC (CL91) Changes

Source: kim_100814_25GE_adhoc


Similar changes required independent of PCS starting point

Conclusions as of Dec 17 Ad Hoc

- Clause 49 is the better starting point for a 25GbE PCS.
 - even in the case where an AM (CWM) is required to be inserted to support an optional RS-FEC
 - clearly the simplest implementation for 10/25G NIC
 - one could argue that is also the simplest implementation for a multi-rate 10/25/40/100G switch port
- Changes are required to support a single lane Clause 91 based RS-FEC, irrespective of whether or not the 25GbE PCS is based on CL49 or CL82.
 - magnitude of changes are equivalent in both cases

Change since Dec 17 Ad Hoc Call ?

 Moved AM (CWM) function that is needed to support RS-FEC, from being an optional mode in the PCS clause to being part of the RS-FEC clause.

Note: Optional CL74 FEC not shown in interest of clarity.

Summary

- We believe the the latest baseline proposal (including the change in moving the CWM to the RS-FEC clause) is a good compromise to address all the different application needs for 25GbE.
- Best from an Architecture perspective
 - CWMs really belong with RS-FEC
 - Allows optional RS-FEC to be cleanly decoupled from PCS
 - Most flexibility on how CWMs are implemented (especially for chip designs which implement both PCS and FEC)
- Best from an Editorial perspective
 - Pretty much only one Clause (RS-FEC) has significant changes
- Best from a 'needs' perspective
 - A vast majority of companies will benefit from simply speeding up 10G KR related functions only