25G IEEE AMO THOUGHTS

AMO Talking Points

Eric Baden
Howard Frazier
Yong Kim
Rob Stone

25G IEEE AMO THOUGHTS

BACKGROUND

- January 2015 (baden_3by_01b_0115.pdf):
- PCS and FEC Baseline Approved ($\mathrm{Y}: 62, \mathrm{~N}: 3, \mathrm{~A}: 16$)
- CWMs are used for RS FEC locking
- Constructed from concatenation of CL82 40G AM0, AM1, AM2, AM3
- March Plenary 2015 (slavick_3by_01a_0315.pdf):
- Amendment proposed and accepted (Y: 25, N: 8, A: 44):
- Change AMO to 100G AMO from 40G AMO
- CWMs are used for RS FEC locking
- Constructed from concatenation of CL82 100G AM0, and CL82 40G, AM1, AM2, AM3

1. Estimated savings of 10 K gates per PHY.

- "Implementations doing 400GE, 100GE and 4x25GE use the same logic to align to the codeword, saving ~10k gates"
- "For EEE use same AMO RAMs as 100GE with a codeword spacing of 1 instead of 2 to provide the highest frequency of markers as possible. 100G provides markers every 100ns while 25 G would be 200 ns ."

25G IEEE AMO THOUGHTS

TALKING POINTs

- The predicted area savings can be improved.
- This presentation will demonstrate that the cost per 25G PHY is on the order of 1 K gates in total.
- Both 1 K and 10 K gates are insignificant for a 35 M gates NIC or a 1 B gate Switch.
- IEEE Task Forces does not have time to consider miniscule savings of even 10K gates on such devices.
- The following addresses each of the items listed as justifications for this change:

1. Estimated savings of 10 K gates per PHY.

- "Implementations doing 400GE, 100GE and 4x25GE use the same logic to align to the code-word, saving ~10k gates"
- The logic which implements the "parallel test and detect" mechanism is required on each lane of a 100G port.
- That logic may be optimized for the specific pattern ("comparing to a constant is cheaper than to a programmable value").
- Out of the 12 nibbles, or 48 bits, that are validated when testing for an AM0 match, only 21 bits differ between the 100G AMO and the 40G AM0.
- Therefore, only $21-2$ to 1 muxes (3 gates each) are needed to select between a 40G and a 100G AM0 compare.
- For 48 "parallel and test" mechanisms, the total difference is less than 1 K gates (984)
- See following page for details and summary.

2. "For EEE use same AMO RAMs as 100GE with a code-word spacing of 1 instead of 2 to provide the highest frequency of markers as possible. 100G provides markers every 100ns while 25 G would be 200ns."

- It can be shown that the same AMO format can be used for 'normal' vs. 'rapid' CWMs

1. http://www.ieee802.org/3/by/public/adhoc/architecture/cober 050615 25GE adhoc.pdf
2. http://www.ieee802.org/3/by/public/adhoc/architecture/wertheim_050615_25GE_adhoc.pdf

25G IEEE AMO THOUGHTS

40G AM0

 100G AMO

Synthesis results:

1) Match only $100 \mathrm{GAMO}: 41.040001$ (total cell area)
2) Match 40 G AMO or 100G AMO based on a select bit : 52.110001 ;
3) From the .lib files, 2 -input AND gate area : 0.54;

SUMMARY:

100G AMO logic is 41.04/.54 $=76$ gates
100G OR 40G AMO logic is $52.11 / .54=96.5$ gates.
Differences is 20.5 gates per comparator.
Assume 48 compares per lane $=20.5^{*} 48=984$ gates per PHY.

25G IEEE AMO THOUGHTS

MORE AND SUMMARY.

- AMO from 40G MLD running at 25G line rate reduces confusion:
- AM0 from 100G MLD is the CW boundary definition for 100G FECs.
- PUT THE AMO BACK TO THE 40G FORMAT
- The area cost is negligible.
- No effect on EEE

25G IEEE AMO THOUGHTS

THANK YOU!

