AM0 Talking Points

Eric Baden Howard Frazier Yong Kim Rob Stone

BACKGROUND

- January 2015 (baden_3by_01b_0115.pdf):
- PCS and FEC Baseline Approved (Y: 62, N: 3, A: 16)
 - CWMs are used for RS FEC locking
 - Constructed from concatenation of CL82 40G AM0, AM1, AM2, AM3
- March Plenary 2015 (*slavick_3by_01a_0315.pdf*):
- Amendment proposed and accepted (Y: 25, N: 8, A: 44):
 - Change AM0 to 100G AM0 from 40G AM0
 - CWMs are used for RS FEC locking
 - Constructed from concatenation of CL82 100G AM0, and CL82 40G, AM1, AM2, AM3
 - 1. Estimated savings of 10K gates per PHY.
 - "Implementations doing 400GE, 100GE and 4x25GE use the same logic to align to the codeword, saving ~10k gates"
 - "For EEE use same AMO RAMs as 100GE with a codeword spacing of 1 instead of 2 to provide the highest frequency of markers as possible. 100G provides markers every 100ns while 25G would be 200ns."

TALKING POINTs

- The predicted area savings can be improved.
 - This presentation will demonstrate that the cost per 25G PHY is on the order of 1K gates in total.
- Both 1K and 10K gates are insignificant for a 35M gates NIC or a 1B gate Switch.
- IEEE Task Forces does not have time to consider miniscule savings of even 10K gates on such devices.
- The following addresses each of the items listed as justifications for this change:
- 1. Estimated savings of 10K gates **per PHY**.
 - "Implementations doing 400GE, 100GE and 4x25GE use the same logic to align to the code-word, saving ~10k gates"
 - The logic which implements the "parallel test and detect" mechanism is required on each lane of a 100G port.
 - That logic may be optimized for the specific pattern ("comparing to a constant is cheaper than to a programmable value").
 - Out of the 12 nibbles, or 48 bits, that are validated when testing for an AMO match, only 21 bits differ between the 100G AMO and the 40G AMO.
 - Therefore, only 21 2 to 1 muxes (3 gates each) are needed to select between a 40G and a 100G AM0 compare.
 - For 48 "parallel and test" mechanisms, the total difference is less than 1K gates (984)
 - See following page for details and summary.
- 2. *"For EEE use same AMO RAMs as 100GE with a code-word spacing of 1 instead of 2 to provide the highest frequency of markers as possible. 100G provides markers every 100ns while 25G would be 200ns."*
 - It can be shown that the same AM0 format can be used for 'normal' vs. 'rapid' CWMs
 - 1. http://www.ieee802.org/3/by/public/adhoc/architecture/cober_050615_25GE_adhoc.pdf
 - 2. http://www.ieee802.org/3/by/public/adhoc/architecture/wertheim_050615_25GE_adhoc.pdf

40G AM0	0x90, 0x76, 0x47, BIP3, 0x6F, 0x89, 0xB8, BIP7
100G AM0	0xC1, 0x68, 0x21, BIP3, 0x3E, 0x97, 0xDE, BIP7

1	0	0	1	0	0	0	0	- 0	1	l	1	1	- 0)	1	1	- 0	- 0	1	l	0	-0	- 0	- 1	1	1	0	1	- 1	- 0	1	1	1	1	1	- ()	0	0	1	- 0	- 0	1	1	()	1	1	1	-0	- 0	0
1	1	0	1	0	0	0	1	- 0	1	L	1	0	1		0	0	- 0	- 0	()	1	0	- 0	- 0	0	1	0	- 0	1	- 1	1	1	1	- 0	1	()	0	1	0	1	1	1	1	1	l	0	1	1	1	1	0
	1						1					1	- 1		1	1]]	l	1			1	1	Т		1		- 1				1					1	1	1	- 1]	l	1			1	- 1	

Synthesis results:

1) Match only 100G AM0 : 41.040001 (total cell area)

2) Match 40G AM0 or 100G AM0 based on a select bit : 52.110001;

3) From the .lib files, 2-input AND gate area : 0.54;

SUMMARY:

100G AM0 logic is 41.04/.54 = 76 gates 100G OR 40G AM0 logic is 52.11/.54 = 96.5 gates. Differences is 20.5 gates per comparator. Assume 48 compares per lane = 20.5*48 = **984** gates per PHY.

May 13, 2015

MORE AND SUMMARY.

- AM0 from 40G MLD running at 25G line rate reduces confusion:
 - AM0 from 100G MLD is the CW boundary definition for 100G FECs.
- PUT THE AMO BACK TO THE 40G FORMAT
 - The area cost is negligible.
 - No effect on EEE

THANK YOU!