Auto-Negotiation for 25G-CR Cables

Venu Balasubramonian, Marvell Matt Brown, APM

Objective

- Proposal for an Auto-Negotiation scheme and PMD designation for 25GbE passive copper cables that is
 - 1. In alignment with the approved objectives for the Task Force
 - 2. Consistent with use of AN in 802.3

Objectives for Passive copper: A recap

- Define a single-lane 25 Gb/s PHY for operation over links consistent with copper twin axial cables, with lengths
 up to at least 3m
- Define a single-lane 25 Gb/s PHY for operation over links consistent with copper twin axial cables, with lengths up to at least 5m
- Two PMD types:
 - 1. Type 1: Capable of driving at least 3m
 - 2. Type 2: Capable of driving at least 5m

Drivers behind a separate 3m objective

- 3m reach is sufficient for server to switch links in Cloud scale datacenter environments
 - Fully engineered links
 - Power and latency are premium
- Additional latency and power introduced by the CL91 FEC (or an FEC of equivalent gain) an unnecessary overhead

Assumptions for the 3m CR PMD

- If possible, specify without FEC to minimize latency
- If CL74 FEC is required, this can be negotiated using FEC ability bit as is used for various PHYs
- Host loss budget could potentially be lower than the 802.3bj host budget

Drivers behind a separate 5m objective

- Compatibility with 100G equipment with 100GBASE-CR4 capability and 4x25G modular interconnect
- Provides reach beyond a single rack for efficient use of high-port-density switches

Assumptions for the 5m CR PMD

- All specifications are similar to those for 100GBASE-CR4
- CL91 FEC is always required in the same way as for 100GBASE-CR4.
 - Transmitter always encodes FEC
 - Receiver has the option to correct errors or not to save some latency when possible

Auto-negotiation in 802.3

- Technology ability advertised by the two ends of a link
 - Highest common ability picked based on predefined priority resolution
- Advertised technology ability controlled by the higher layer control function (system user, pervasive management)
 - Based on the specific requirements of an application, user may choose not to advertise an ability even if it's supported by the underlying hardware

AN proposal for 25G-CR cables

- Add two new technology-dependent PHY types (placeholder nomenclature)
 - 1. 25G-CR-S (higher priority)
 - 2. 25G-CR-L
- 25G-CR-S: A PMD capable of supporting a total link budget consistent with the 3m objective
- 25G-CR-L: A PMD capable supporting a total link budget consistent with the 5m objective

Update technical abilities

Table 73-4 – Technology Ability Field encoding

Bit	Technology
A0	1000BASE-KX
A1	10GBASE-KX4
A2	10GBASE-KR
A3	40GBASE-KR4
A4	40GBASE-CR4
A5	100GBASE-CR10
A6	100GBASE-KP4
A7	100GBASE-KR4
A8	100GBASE-CR4
<u>A9</u>	25GBASE-KR
<u>A10</u>	25GBASE-CR-S
<u>A11</u>	25GBASE-CR-L
A9A12 through A24	Reserved for future technology.

Update priority resolution

Table 73-7 – Priority Resolution

Priority	Technology	Capability
1	100GBASE-CR4	100GBASE-CR4 100 Gb/s 4 lane, highest priority
2	100GBASE-KR4	100 Gb/s 4 lane
3	100GBASE-KP4	100 Gb/s 4 lane
4	100GBASE-CR10	100 Gb/s 10 lane
5	40GBASE-CR4	40 Gb/s 4 lane
6	40GBASE-KR4	40 Gb/s 4 lane
<u>7</u>	25GBASE-CR-S	25 Gb/s 1 lane
<u>8</u>	25GBASE-CR-L	<u>25 Gb/s 1 lane</u>
7 <u>9</u>	10GBASE-KR	10 Gb/s 1 lane
<u>810</u>	10GBASE-KX4	10 Gb/s 4 lane
9 <u>11</u>	1000BASE-KX	1 Gb/s 1 lane, lowest priority

Usage scenario 1: Server to switch links on Cloud-scale Datacenters

- Server and switch advertise only CR-S capability
 - Engineered links with cables and host budgets guaranteed to meet the 3m objective
 - Inability to link up indicates link issues
 - Bad connector/cable etc.
 - Thus using the CR-L to try and link up under this scenario not a logical option

Usage scenario 2: Server to switch links in an enterprise data center

- Both switch and server support only the CR-S PMD type
 - Identical to the cloud scale datacenter usage scenario
- Only one of the end points supports CR-L PMD type
 - End user allowed to use only a CR-S (<3m) cable
 - The CR-S only end point advertises only CR-S, and the link Autonegotiates to CR-S mode of operation
- Both end points support CR-S and CR-L PMD types (cable type plugged in unknown)
 - Case 1: "Aggressive" configuration
 - Advertise both CR-S and CR-L capabilities and try to link up in CR-S mode
 - Re-negotiate with CR-L only if link up fails
 - Case 2: "Conservative" configuration
 - Start with CR-L and switch to CR-S only if link partner ability limited to CR-S

Usage scenario 3: Inter-rack links

- Require both switch and server to be CR-L capable
 - End user allowed to plug in a CR-L (>3m) cable only if supported on both ends of the link
 - Case 1: Both CR-L and CR-S advertised
 - Link up attempted with the highest priority mode (CR-S)
 - Falls back to CR-L on failure to link up in CR-S mode
 - Case 2: Only CR-L advertised
 - Link up attempted and established with CR-L mode

Usage scenario 4: Systems with asymmetric host losses

- Asymmetric host losses can be supported only on engineered links
 - Need to guarantee that the total budget is within the CR-L spec limit
 - Try to link up with CR-L mode
 - Use link quality monitor (FEC statistics) to decide if link up successful
 - Report to higher layers if link up unsuccessful after multiple ANs

Summary

- Auto-negotiation based on two distinct PMD types covers all major usage scenarios
- Consistent with objectives, and traditional use of Auto-negotiation
- Consistent with what is physically possible based on the capabilities of port types targeted to meet the approved task force objectives
- Optimizes and simplifies PMD for end use cases

Thank You