Four-wave mixing impact in O-band

Jinglei, Dekun Liu

2016. July

Four-wave mixing introduction

• Four-wave mixing (FWM) is a type of optical Kerr effect (third-order electric susceptibility nonlinear effect of optical fiber), and occurs when light of two or more different wavelengths is launched into a fiber.

- FWM occurs when light of three wavelengths is launched into a fiber, giving rise to a new wave (know as an idler).
- When the frequencies of the two pumping waves are identical, it's called "degenerated four-wave mixing" (DFWM).

Origin of FWM

• Third order nonlinearity

$$P_{NL} = \varepsilon_0 \chi^{(3)} : EEE$$

• Energy Conservation

$$\omega_4 = \omega_1 + \omega_2 - \omega_3$$

• Momentum Conservation—phase matching

$$\beta_4 = \beta_1 + \beta_2 - \beta_3$$

FWM effect on WDM systems:

- In WDM system, since all wave propagate in the same direction, the phase mismatch can be write as Δκ = β(ω₄) + β(ω₃) β(ω₂) β(ω₁) (1)
 Where, β(ω)is the propagation constant for an optical field with frequency ω. In the degenerate case, ω₂₌ ω₁, ω₃ = ω₁ + Ω, and ω₁ Ω, Ω represents the channel spacing.
- the power transferred to the FWM component in a fiber of length L is given by

$$P_F = \left| A_F(L) \right|^2 = \eta_F (d_F \gamma L)^2 P_i P_j P_k e^{-\alpha L}$$
(2)

Where, γ is fiber nonlinear parameter, Pm m= i,j,k is the launched power in the m channel α is loss, dF = $2-\delta_{ij}$ is the degeneracy factor defined such that its value is 1 when i = j but doubles when i = j. P_F is the launched power in the m_{th} channel and η_F is a measure of the FWM defined as

$$\eta_F = \left| \frac{1 - \exp(-(\alpha + i\Delta k)L)}{(\alpha + i\Delta k)L} \right|^2$$
(3)

• The FWM efficiency depends on the channel spacing through the phase mismatch governed by $\Delta k = \beta_F + \beta_k - \beta_i - \beta_j \approx \beta_2(\omega_i - \omega_k)(\omega_j - \omega_k)$ (4) where the propagation constants were expanded in a Taylor series around ω c = (ω i + ω j)/2 and β 2 is the GVD parameter at that frequency

VPI simulation

• Set up

≻4 transmitters with equal channel spacing in O-band

```
(from 100GHz ~ 400GHz)
```

Launch power : from 3dBm up to 10dBm

- ≻20km G652 fiber
- >25Gb/s NRZ modulation

Signal depletion

FWM penalty vs fiber dispersion

- FWM decreases as dispersion coefficient increases
- FWM increases as launch power increases
- FWM decreases quickly as channel spacing increases, is negligible when channel spacing more than 400GHz

Summary

Required fiber dispersion D (ps/nm/km) for <0.2dB FWM penalty:

launched power (dBm)	100 GHz (ps/nm/km)	200 GHz (ps/nm/km)	400G Hz (ps/nm/km)
3	>0.5	>0.1	0
6	>2.0	>0.18	0
8	>2.4	>0.3	0
10	>2.6	>2	0(>0.1e-3)
13	-	-	>0.8

Wavelength band restricted by FWM:

launched power (dBm)	100 GHz (ps/nm/km)	200 GHz (ps/nm/km)	400G Hz (ps/nm/km)
3	$\lambda 0 \pm 5.37 nm$	λ 0 ± 1.07 nm	NA
6	$\lambda 0 \pm 21.5$ nm	λ 0 ± 1.93nm	NA
8	λ 0 ± 25.8nm	λ 0 ± 3.22nm	NA
10	λ 0 ± 27.9nm	λ 0 ± 21.5nm	NA ($\lambda 0 \pm 0.1$ nm)
13	-	-	$\lambda 0 \pm 8.6$ nm

λ0: zero dispersion wavelength 1300~1320nm

Thank you www.huawei.com

