Meeting Minutes

Group:	IEEE 802.3 100G-EPON Task Force					
Event:	Task Force Plenary meeting					
Date:	From: 25 Jul, 2016 To: 27 Jul 2016					
Location:	San Diego CA USA					

25 July 2016

1:05 PM – The meeting was called to order by the Working Group Chair. Duane Remein volunteered to serve as recording secretary. The Chair held Introductions and gave the opening report.

Motion #1

Approve the agenda for Task Force meeting to be held July 25-27, 2016, in San Diego located in file
http://www.ieee802.org/3/ca/public/meeting_archive/2016/07/agenda_3ca_1_0716.pdfMoved:Marek HajduczeniaSeconded:Phil MiguelezProcedural > 50%Passed by voice without opposition

Motion #2

Approve the meeting minutes from Task Force meeting held May 24-25, 2016, in Whistler, BC, in file:http://www.ieee802.org/3/ca/public/meeting_archive/2016/05/minutes_unapproved_3ca_0516.pdfMoved:Duane RemeinSeconded:Alan BrownProcedural > 50%Passed by voice without opposition

The Chair reviewed meeting decorum, the Task Force reflector & WEB page, and IEEE Organization & Bylaws. The IEEE patent policy was read.

1:17 PM – A call for patents was made. No response was received.

The Chair reviewed the IEEE process, goals for meeting, and future meeting (Ft. Worth in Sept., San Antonio Nov.) polls were taken.

Presentations and Discussion

1:30 AM – Presentations

 All presentation information is formatted as follows:
 Atthor/Presenter
 Affiliation

 Title
 Author/Presenter
 Affiliation

 Notes
 file_name
 Affiliation

25/50/100G PON optical vendor input Ed Harstead

Nokia

This presentation summarized input received from various optical component vendors to questions posed by the presenter. Questions covered laser cost, launch power, extinction ratio, wavelength tolerance, channel spacing, wavelength blocking filter cost. harstead_3ca_1a_0716.pdf

25G power budget: 2nd iteration, downstream

Ed Harstead

This presentation suggested parameter values for launch power, and extinction ratio based on the data presented in harstead_3ca_1a_0716.pdf. harstead_3ca_2_0716.pdf

Unification of 25G receiver sensitivity for 100G EPON

Hanhyub Lee

This presentation examined the values provided for receive sensitivity in previous contributions and found a wide variance in sensitivity versus extinction ratio. It was suggested that common experimental conditions be selected for all future contributions. lee_3ca_2_0716.pdf

Component Capabilities for NG-EPON John Johnson

This presentation examined BOSA cost/complexity in going from 10/10G to 25/10G and finally 25/25G capability.

johnson_3ca_2_0716.pdf

Further consideration of 25G DML transmission (including temperature dependency) Naruto Tanaka S

Sumitomo Electric

This presentation reviewed impact of extinction ratio vs temperature and launch power on the total dispersion penalty for DML transmitters.

tanaka_3ca_1_0716.pdf

The Impact of Differential Pre-coding on 25-Gb/s EDB, NRZ, and NRZ-NFC

Dekun LiuHuawei TechnologiesThis presentation provided input on potential issues using pre-coding (see houtsma_3ca_1_0516.pdf) on
some potential receiver technologies depending on the dispersion present. It was suggested that a
decision on pre-coding be deferred.liu_3ca_5_0716.pdf

Proposal for 25Gb NRZ PMD Yong Guo ZTE Corporation

This presentation suggested optical budget parameters for both downstream and upstream. The downstream wavelength plan suggested is in the O+ band (~1340 / 800GHz spacing) and upsteam plan is in the O- band (also 800 GHz spacing) guo. 3ca 1, 0716 pdf

guo_3ca_1_0716.pdf

100G-EPON ConfigurationsGlen KramerBroadcomThis presentation provided an architectural overview showing that, by specifying a 100 Gbps system, 50Gbps or 25 Gbps systems can be included by omitting features (channels) of the 100 Gbps system. This

Nokia

ETRI

Broadcom

presentation was first shown on a conference call held on 6/23/16. kramer_3ca_1_0716.pdf

25G- to 50G- to 100G-EPON Upgrade Scenarios

Glen Kramer

This presentation expanded on the concepts provided in kramer_3ca_1_0716.pdf to show how capacity could be expanded through various upgrade scenarios. It was also argued that the "1+4" model was higher cost then the "1+3" model.

kramer_3ca_2_0716.pdf

25G/50G/100G EPON architectures: 1+3 vs. 1+4

Bill Powell

This presentation compared "1+4" vs"1+3" architectures. powell_3ca_1_0716.pdf

6:22 PM – recessed for the day.
25 July 2016
8:03 AM – reconvened. After a short discussion on the implications of 1+3 vs 1+4 on the standardization process the TF continued presentations.

Considerations for 100G EPON Standardization James Zhang (presented by Phil Miguelez, Comcast) China Telecom This joint presentation covered deployment requirements and development preferences from the perspective of China Telecom and Comcast. zhang_3ca_1_0716.pdf

The Needs for Standalone 25G EPONEugene DaiCox CommunicationsThis presentation argued that a 4x25G system should be allowed, assuming that all 25G channel operateon the same wavelength.this presentation argued that a 4x25G system should be allowed, assuming that all 25G channel operate

dai_3ca_3_0716.pdf

100G EPON wavelength plan considerationDekun LiuHuawei TechnologiesThis presentation examined the guard band and spectrum width necessary for an uncooled laser. It wassuggested that a 10nm guard band is needed while a 16nm spectral width is challenging for extendedtemperature.

liu_3ca_3_0716.pdf

25G/50G/100G EPON wavelength plan: if all wavelengths in O-band

Ed Harstead

Nokia

This presentation explored wavelength plans and suggested placing one channel (low cost 25G) in O-Band (upstream & downstream) and remaining 3-4 channels in S/C/L Bands. harstead_3ca_3_0716.pdf

Consideration on optical crosstalk and required wavelength block filter for receiver

Tomoyuki Funada

Sumitomo Electric

Nokia

Broadcom

This presentation examined WDM filter requirements given 800GHz channel spacing. The conclusion was that such filters are feasible for both ONU and OLT. funada_3ca_1_0716.pdf

Consideration of WDM filter loss for 100G EPON

Hanhyub Lee

This presentation considered the wavelength filter required for the 100G system. It was noted that the target channel insertion loss figures for LAN-WDM filters is 1.5 dB. Also it was concluded that the WDM filter losses need to be included in the 100G optical budget. lee_3ca_1_0716.pdf

LD cost comparison for typical wavelength plans

Wanhui (Wilson) He Accelink Technologies Co., Ltd. This presentation reviewed several wavelength plans. The conclusions are that all upstream channels should all be in the O-Band, a 1+3 architecture is preferred and a cooled DML with a 6 nm spectrum width is preferred.

he_3ca_1_0716.pdf

12:07 PM – recessed for lunch, reconvened at 1:35 PM.

Four-wave mixing impact in O-band Dekun Liu **Huawei Technologies**

This presentation provided an analysis of four wave mixing (FWM) simulation results for 100, 200 & 400 GHZ channel spacing. The conclusion is that, for these very close channel spacing's in O-Band there would be some potential for issues with FWM. The effects of FWM will be insignificant outside the zero dispersion band (~1300-1320) and with launch power < ~10 dBm and with larger channel spacing's (≥~800GHz).

liu_3ca_1_0716.pdf

Four-wave mixing in O-band for 100G EPON

John Johnson

Broadcom This presentation was first provided for the conference call on July 6 2016. The material covers FWM in the O-Band from a theoretical point of view considering fiber properties, phase matching, launch power, polarization, and channel spacing.

johnson_3ca_1_0716.pdf

Analytical investigation of FWM for O-band multi-channel transmission

Hwan Seok Chung

This presentation gave an analysis of FWM. The conclusion is that for Channel spacing's greater than 400 GHz crosstalk due to FWM should be less than 30 dB. chung_3ca_1_0716.pdf

De-skew Method for 100G EPON Downstream Channels

Duane Remein

Huawei Technologies

This presentation illustrated a mechanism to deskew data from an ONU by aligning FEC CWs at the transmitter and measuring the FEC CW arrival time at the receiver. The mechanism could be extended

ETRI

ETRI

to account for skew greater than one FEC CW by using a modified sync word in the FEC CW. The measured skew can then be used to realign the data leaving the OLT PHY. yin_3ca_1_0716.pdf

Fragmentation - one option Duane Remein

This presentation outlined a method of upstream channel bonding with fragmentation by striping data in FEC CW blocks in a fragmentation layer above the RS (or included in the RS). Fragment markers would be used to identify which channel(s) contain fragments for the LLID. It was noted that the receiver will need buffering sufficient to hold one max size frame (minus one fragment) for each LLID handled by the OLT.

remein_3ca_3_0716.pdf

Bonding with FEC codewords Frank Effenberger **Huawei Technologies**

This presentation outlined a method of upstream channel bonding with fragmentation by striping data in FEC CW blocks in the PHY. The PHY would determine which lanes to use by monitoring multiple MII interfaces (1 each 25GMII, 50GMII, and 100GMII).

effenberger_3ca_2_0716.pdf

Channel Bonding in Reconciliation Sublayer (Upstream Direction)

Glen Kramer

Broadcom

This presentation detailed a channel bonding solution based on marking each FEC CW in a modified RS layer. Marking consisted of a Sequence number and an LLID value. kramer_3ca_3_0716.pdf

6:15 PM recessed for the day 25 July 2016 8:07 AM – reconvened, continued presentations.

2D Scheduling for 100G EPON Eugene Dai **Cox Communications** This presentation discussed scheduling in both time (current 10G-EPON model) and across some number of channels.

dai_3ca_1_0716.pdf

Two-color Grants for 100G EPON Channel Bonding

This presentation suggested grants only be issued in two sizes; small & large. dai 3ca 2 0716.pdf

100G EPON downstream solution analysis and comparison

Huawei Technologies Dekun Liu This presentation examined several options for operating in S/C/L-Bands using Electrical Duo Binary and Optical Duo Binary modulation. Comparison cost for each option was provided using an O-Band NRZ scheme as baseline cost (x). The conclusion was that EDB is the lowest cost (\sim 1.7x) whereas both NRZ (O-Band) and ODB are about the same ($\sim 2.3x$).

liu 3ca 4 0716.pdf

Eugene Dai

Cox Communications

Huawei Technologies

100G EPON coexistence discussion	Dekun Liu	Huawei Technologies
This presentation explored several optio	ons to specify coexistence betw	een 25G upstream and 10G
upstream. The conclusion was that a WI	DM mechanism is preferred.	
liu_3ca_2_0716.pdf		
Objectives	Duane Remein	Huawei Technologies
This presentation suggested a clarification	on to the objective specifically	calling for coexistence with

10/10G-EPON and not 10/1G-EPON. remein_3ca_1_0716.pdf

802.3ca Terms & Definitions **Glen Kramer**

This presentation suggested some naming conventions. kramer_3ca_4_0716.pdf

A rough workplan "nudge" to 100G, 50G, and 25G NGEPON

Mark Laubach

Broadcom LDT

Broadcom

This presentation from the floor addressed a work plan that the Task Force can follow to progress the work needed to complete.

laubach 3ca 1 0716.pdf

12:05 PM recessed for lunch. Reconvened at 1:33 PM.

Motion #3

The Task Force agrees that "10G-EPON" in our Objectives means 10/10G-EPON and specifically does not include 10/1G-EPON. Furthermore, "concurrent operation" applies to either TDM or WDM coexistence. Moved: Duane Remein Seconded: Marek Hajduczenia Abstain: 2 For: 25 Against: 0 Technical \geq 75% Passed

At the time of Motion #3 there were 29 people in the room.

Motion #4

Accept upstream channel bonding in Reconciliation Sublayer as presented in kramer_3ca_3c_0716.pdf with the modification that includes just-in-time FEC codeword prefetch. Develop similar mechanism for downstream. This motion supersedes motion #6 from Macau.

Seconded: Duane Remein Moved: Glen Kramer For: 22 Against: 1 Abstain: 4 Technical \geq 75% Passed

Motion #5

The 802.3ca standard shall specify wavelengths for 25G, 50G, and 100G systems in O-band. Seconded: Kevin Noll Moved: Marek Hajduczenia For: 0 Against: 100 Abstain: 0 Technical \geq 75% Motion Tabled by Motion #6

Motion #6				
Motion to Table motion	#5			
Moved: John Johnson Seconded: Dekun Liu				
For: 15 Against:	8 Abstain: 1			
Procedural > 50%	Passed			

Straw Poll # 1	
The 802.3ca standard s	hall specify wavelengths for 25G, 50G, and 100G systems in O-Band.
Yes:	15
No:	0
Not enough informatio	n: 9

Those voting "Not enough information" in Straw Poll #1 suggested the following information is needed to make a decision.

- 1) Exact (detailed) wavelength plan including support for coexistence (TDM or WDM).
- 2) Full cost comparison between all O-Band and other solutions.
- 3) More consensuses in presentations.
- 4) Dispersion compensation analysis of all solutions.
- 5) Full power budget for full 100G system (including mux losses) and what is needed to close the gap.

Straw Poll # 2	
l prefer:	
1+3 solution:	17
1+4 solution:	3
Need more information:	7

Motion	#7
--------	----

All 25G ONUs and 25G O	LTs shall use t	he same wav	elength pair, which is also used by 100G ONUs and
100G OLTs.			
Moved: Glen Kramer		Seconded:	Phil Miguelez
For: 16 Against:	6 Abstai	n: 3	
Technical \geq 75%	Failed		

Straw Poll #	3
100G EPON	wavelength plan should consider the cost optimization of 25G and 100G simultaneously.
Agree:	22
Disagree:	0
No opinion:	2

Motion #	8		
A propos	al on waveleng	th plan	in Task Force should consider 25G EPON and 100G EPON simultaneously.
Moved:	Dekun Liu		Seconded: David Li
For:	Against:	100	Abstain:
Technica	≥75%	Motio	n tabled by Motion #9

Motion #9		
Motion to table motion	#8.	
Moved: Duane Remeir	n Seconded:	Marek Hajduczenia
Procedural > 50%	Passed by voice without o	pposition

Motion #10Accept names for the PHYs as shown in kramer_3ca_4a_0716.pdf, slide #7.Moved:Glen KramerSeconded:Duane RemeinFor:24Against:0Abstain:Technical $\geq 75\%$ Passed

Wavelength Plan Inventory as of 7/27/16Glen KramerBroadcom LDTThe Task Force jointly compiled this list of potential wavelength plans. Several participants volunteeredto provide full details on each plan outlined by the next meeting.kramer_3ca_5_0716.pdf

The Chair gave a closing report.

Proposal of evaluation condition of 25 Gbps APD receiver

Hanhyub Lee

ETRI

This presentation outlined parameters which need to be determined in order to properly assess the PMD optical specifications for NG-EPON. lee 3ca 2 0716.pdf

Motion #11Move to adjourn.Moved:Frank EffenbergerProcedural > 50%Passed by voice without opposition

6:22 PM The meeting was adjourned.

The following presentations were submitted for the meeting but, for the reasons given were not presented. All are available on the Task Force Web site.

PMD call for contributionsFrank EffenbergerHuawei TechnologiesThis presentation, covered in a conference call, was not given in order to save time during the face to
face meeting.effenberger_3ca_1_0716.pdf

Dispersion Tolerance Measurements @ 1330 nm 25G NRZ/Duobinary with DML Vincent Houtsma Nokia Bell Labs This presentation was provided for reference only and was not reviewed during the meeting. houtsma_3ca_1_0716.pdf

FWM Simulations in O-band Dora van Veen

Nokia Bell Labs

This presentation was provided for reference only and was not reviewed during the meeting. van_veen_3ca_1_0716.pdf

Co-existence with Legacy & NG-EPON Moonsoo Park

This presentation was not reviewed as the author was unable to attend the meeting. park_3ca_1_0716.pdf

Draft Material for RS

Duane Remein

Huawei Technologies

КΤ

This presentation was deferred by the author indefinitely. remein_3ca_2_0716.pdf

Attendance

Family Name	Given Name	Affiliation	25- Jul	26- Jul	27- Jul	Meeting Days
Brown	Alan	CommScope	x	x	x	3
Chang	Ayla	Huawei	x	~	~	1
Chang	Frank	Inphi	x	x		2
Chung	Hwan Seok	ETRI	x	x	x	3
Dai	Eugene	Cox Communication	x	x	x	3
Effenberger	Frank	Huawei	x	x	x	3
Funada	Tomoyuki	Sumitomo	x	x	x	3
Gong	Zhigang	O-Net		^	^	1
Guo	Yong	ZTE Corp	x	v	v	3
Hajduczenia	Marek	Charter	X	X	x	3
			X	X	x	1
Harstead He	Ed Wanhui (Wilson)	Nokia Accelink	X	X	x	3
Howald	Robert		X			
		Comcast		X	X	2
Ishibe	Kazuhiko	Anritsu	X	X		2
Johnson	John	Broadcom LTD.	X	Х	х	3
Knittle	Curtis	CableLabs	X	х	х	3
Kramer	Glen	Broadcom LTD.	Х	Х	х	3
Lackner	Hans	QoSCom GmbH	Х			1
Laubach	Mark	Broadcom LTD.	x	Х	х	3
Lee	Hanhyub	ETRI	x	Х	х	3
Li	David	Ligent	x	Х	х	3
Li	Weiqi	II-VI Photonics	x	х		2
Liu	Dekun	Huawei	x	Х	х	3
Liu	Quan	KITT/CAICT		Х	х	2
Lokhandwala	Moiz	Charter / Time Warner Cable	x		х	2
Miguelez	Phil	Comcast	x	х	х	3
Mooney	Paul	Sprint	х			1
Noll	Kevin	Charter / Time Warner Cable		х	х	2
Parsons	Earl	CommScope	x	х	х	3
Peters	Michael	Sumitomo	x	х	х	3
Powell	Bill	Nokia	х	х	х	3
Remein	Duane	Huawei	x	х	х	3
Salinger	Jorge	Comcast	х	х	х	3
Suzuki	Ken-Ichi	NTT	x	х	х	3
Tanaka	Naruto	Sumitomo	х	х	х	3
Tucker	Ryan	Charter	х	х	х	3
Umnov	Alexander	Corning	х	х	х	3