

25G EPON downstream power budget- 3rd iteration

Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, Bell Labs

January 2017

Previous iteration:

• In harstead_3ca_2a_0716, proposed FEC requirement as a function of TDP:

• Subsequently we have had new contributions on FEC, TDP, DS/US gap, Rx sensitivity

Scope

Updates

- ER = 8
 - Previously, considered both EML (ER=8 dB) and cooled DML (ER=6 dB) OLT transmitters. Narrow to EML only. Why: the TDP for the DML increases quickly above 1330 nm
 - Elimination of Wavelength Plan C (could have put DS0 at e.g. 1310 nm, allowing DML with low TDP)
 - Want to maximize DS/US gap (johnson_3ca_1a_1116): move DS wavelengths as close as possible to 1360 nm.
- Receiver sensitivity = -24.2 dBm
 - From harstead_3ca_4_0117, ONU Rx Sens_{max} = -24.2 dBm @ ER=8 dB , BER = 10⁻³.
- FEC improvement = 0.5 dB
 - In houtsma_3ca_1_0916 and effenberger_3ca_1_1116, the best proposed FEC with low complexity and no additional overhead compared to 10G EPON is RS(992,864) (symbol length = 10 bits) with input BER = 4x10⁻³, which yields a 0.5 dB optical improvement.
 - Per tf_closing_3ca_1_1116.pdf: "FEC (use a strawman of RS(992,864) until further contributions for developing the loss budgets)".
- TDP = 1.5 dB
 - Reference: tanaka_3ca_1_1116
 - Based on time resolved chirp method in tanaka_3ca_1_0516, plus margin, and not to be less than 10G EPON downstream TDP

NOKIA

- DS/US gap:
 - Receiver sensitivity is derived from low cost 10G EPON ONU focus beam BOSA with 295 nm DS/US gap.
 - If Wavelength Plan A, add 0.2 dB diplexer loss for smaller DS/US gap (funada_3ca_1_0117, harstead_3ca_2a_0117)

ONU receiver sensitivity and OLT launch power specs.

- 5.8 dBm is 0.5 dB more than the vendor input summarized in harstead_3ca_1a_0716 (mean + 1 sigma, p. 8)
- (For Wavelength Plan A, the gap is 0.2 dB higher: 0.7 dB)

Decision: How to get 0.5 more dB. Two obvious options:

- Increase Reed-Solomon FEC OH to obtain another 0.5 dB improvement (i.e. 1.0 dB improvement vs. 10G EPON). Two proposals have been made:

 Need to
 - 1. RS(1023,847) per effenberger_3ca_1_1116. Increases FEC OH from 13% to 17%.
 - 2. RS(992,792) per houtsma_3ca_1_0916. Increases FEC OH from 13% to 20%:
 - It might be OK to increase the downstream overhead by 4-7% since upstream throughput is already compromised by other overheads (due to burst mode) to a greater degree.
- 2. Push optics vendors for 0.5 dB higher output power.

resolve

difference

