GLID as Envelope ID – a Deeper Look

Glen Kramer, Broadcom

Name vs. Essence

- "X" is a name of entity that can be independently scheduled by the OLT and thus allow independent QoS and traffic isolation from other such entities.
 - The number of entities of "X" provisioned per PON is a service quality and policy issue, thus an operator's decision
- "Y" is a name of entity that identifies segregation of network traffic into individual logical connections, flows, streams, sessions, etc. "Y" entities <u>are not independently</u> <u>scheduled</u> and may not allow independent QoS or isolation from other such entities.
- □ What **"X**" and **"Y**" are actually called

	In ITU-T PON	In IEEE PON	In remein_3ca_3_0317
"X"	Alloc-ID (DS only)	LLID	GLID
"Y"	(X)GEM Port-ID	VLAN (VID)	LLID

What is the problem? NGEPON

□ The number of LLIDs provisioned in EPON is a service quality and policy issue.

- This requirement comes first and is external to PON
- LLIDs are provisioned if an when necessary. If the number of LLIDs can be reduced, then they should not have been provisioned in the first place.
- The reassembly buffer size is an internal design issue. It should not restrict the number of LLIDs.
- Remein_3ca_3_0317 does not solve the problem. It just suggests that
 - 1. The number of schedulable entities "X" be reduced.
 - 2. A tag be added to identify entities "Y" (in addition to VLAN tags typically used for this).

Fragmentation buffers

- The larger the number of LLIDs that can be fragmented the larger the fragmentation buffer problem (see kramer_3ca_1_0117)
- Using GLID as envelope ID limits the number of fragments as there are fewer envelopes and thus fewer fragments
- □ Helps contain chip cost

- The number of schedulable entities "X" cannot be reduced, because it is determined by QoS and policy requirements.
- The "GLID as Envelope ID" proposal doesn't solve anything. All it does, it renames "LLID" into "GLID", i.e., instead of scheduling N LLIDs it will now schedule N GLIDs.

March 2017

IEEE 802.3ca 100G-EPON

N N

What is the problem? NG EPON

- Bullets 1 and 2 just show the general motivation of using GLID for upstream scheduling. <u>This has nothing to do with using GLID as the</u> <u>envelope ID!</u>
- Bullet 3: If the OLT still needs to schedule single PLID/ULID, then the proposed scheme is equivalent to what is accepted in D0.2 already.

Scheduling flexibility

- □ Using GLID as the envelope ID allows the ONU to perform local scheduling of US data based on current conditions and not stale information
- Distributes the scheduling task which can bring more resources to bare on the task
- OLT can still schedule a single PLID/ULID if it is the only LLID in a group

- Note that this scheme requires every ULID to always be either scheduled as part of a group or individually (i.e., a group of one)
- It does not allow the OLT to make this decision dynamically at run-time (e.g., based on current load, number of active LLIDs, or user behavior).

Feb 2017

IEEE 802.3ca 100G-EPON

3

Traffic burstiness

- Traffic is bursty at many timescales – microseconds to hours.
- Even single flows are bursty on sub-RTT timescales (see <u>caida.org/workshops/isma</u> /0411/slides/dovrolis.ppt)
- This means that if a frame belongs to a flow A, the next received frame is much more likely to belong to the same flow A, and not to another flow B.

IEEE P802.

Envelope Header Overhead

This chart shows Envelope Header Overhead under the following conditions:

- 1. All packets are of same size (starting with all 64-byte packets)
- 2. Every packet goes to a different LLID (every envelope contains a single packet)
- 3. Every packet to 100G ONU is split over 4 wavelength
- These are not realistic conditions and they cannot happen all at once.
- Packets usually arrive in bursts, so there are usually multiple packets that can go in each envelope.

- If multiple LLIDs all have a single packet to transmit, then up to 4 LLIDs can transmit in parallel on 4 wavelengths – no need ever to split across wavelengths.
- The 36% overhead is not possible, unless OLT deliberately tries to selfsabotage.
 - The same self-sabotage is possible in XG-PON, because XGEM header is 8 bytes and the minimal XGEM Payload Length is 1 byte (but it is rounded up to 4 bytes). So, the worst case overhead is 91.7%. But it has never been considered a problem because devices do not deliberately sabotage their performance.

Problems with this proposal PON

"PLID/ULID is a member of only one GLID"

- To allow QoS, specifically CIR+EIR bandwidth control per ULID, ULIDs may need to be members of more than one group (see example on the next page)
- Restricting ULID to membership in only one group is a major limitation, which makes GLIDs quite useless.

Realization of GLID as EnvID

Restrict LLID in Envelope header to be only GLID
 Allow an envelope to carry multiple PLID / ULIDs
 Utilize the same preamble replacement as is done for 10G-EPON and 1G-EPON to carry PLID/ULID
 Envelope header describes the transport envelope
 PLID/ULID in preamble identifies the MAC of the frame

□ Some restrictions apply

- PLID/ULID is a member of only one GLID
- May want to consider allowing one set of GLIDs for US use and a different set for DS use (in this case a PLID/ULID would be a member of one GLID per direction)
 - Would only need 3 GLIDs in DS in a 100G-EPON mixed system; 1 for 25G ONUs (Ch 0), 1 for 50G ONUs (Ch0 & 1), and 1 for 100G ONUs (4 Chs)

Feb 2017

IEEE 802.3ca 100G-EPON

8

- "Would only need 3 GLIDs in DS in a 100G-EPON mixed system;
 - 1 for 25G ONUs (Ch 0),
 - 1 for 50G ONUs (Ch0 & 1), and
 - 1 for 100G ONUs (4 Chs)"
- First, this would preclude singlecopy broadcast or multicast involving different ONUs.
- Second, the receiving MPRS needs to filter/demux based on PLID/ ULID values to find the right destination MAC. GLID values in the envelope header are useless!

GLID Use Example (1/2) EPON

□ Consider an MDU ONU with **N** ULIDs (**N** can be very large, but to simplify the example, we take **N**=4) with the following targets for CIR/EIR

ULID	CIR (Mbps)	EIR (weights)	Explanation
Α	500	0	Guaranteed BW of 500 Mbps, no extra bandwidth
В	500	1	Guaranteed BW of 500 Mbps, plus extra bandwidth may be given if available
С	1000	1	Guaranteed BW of 1 Gbps, the extra bandwidth is the same as for ULID B
D	2000	3	Guaranteed BW of 2 Gbps, the extra bandwidth is 3x of what ULIDs B or C get.

□ To grant these ULIDs, we need two GLIDs:

- $GLID1 = \{A, B, C, D\}$ grants bandwidth to satisfy CIR
- $GLID2 = \{B,C,D\}$ grants bandwidth for EIR

GLID1	GLID2	
Assigns following weights A:1, B:1, C:2, D:4	Assigns following weights B:1, C:1, D:3	
Grant length <i>L</i> is dependent on the time interval <i>T</i> since the last grant to GLID1: $L = \sum CIR \times T = 4Gbps \times T$ If <i>T</i> = 2 ms, <i>L</i> = 125,000 EQ If <i>T</i> = 4 ms, <i>L</i> = 250,000 EQ The grant bandwidth is distributed among ULIDs according to CIR weights	 Grant length is determined based on overall EPON load and time available to next time-sensitive (pre-scheduled) grant. Under the high load conditions, GLID2 may not be granted for a long time. When GLID2 is granted, bandwidth is always distributed among ULIDs according to EIR weights 	

GLID Use Example (2/2) EPON

□ Now, consider a GATE arrived with these two grants

GLID1	GLID2
Grant Length = 200,000 EQ	Grant Length = 120,000 EQ

□ The following is the correct allocation of envelope sizes per each ULID:

ULID	From GLID1 (EQ)	From GLID2 (EQ)	Total Envelope Length
Α	25,000	n/a	25,000
В	25,000	24,000	49,000
С	50,000	24,000	74,000
D	100,000	72,000	172,000

□ If a ULID can only belong to one group (i.e., to one GLID), such CIR+EIR allocation will not be possible.

Thank You