Low Latency Services and Requirements for 100G EPON

IEEE P802.3ca Task Force Meeting, March 2017
Vancouver BC, Canada

Jun Shan Wey
Li Quan Yuan
Wei Liang Zhang
Motivation and purpose of this contribution

- In the Huntington Beach meeting, we discussed future services, which might require low latency and impact how standards should be specified (wey_3ca_01_0117)
- Based on feedback from members, there is interest in further investigation of latency related topics
- This contribution provides more detail on both bandwidth and latency requirements of mobile fronthaul for different 5G services and of virtual reality/augmented reality video streaming
- We identified topics to develop in standards to support these services
Mobile Fronthaul Evolution

- What is mobile fronthaul?
- How much bandwidth do we need?
- What is the latency requirement?
- What is the recommended path forward?
Traditional fronthaul link in Radio Access Network

- CPRI Fronthaul line rate depends on many factors, e.g., number of antennas and sectors, sampling rate, line coding, etc. CPRI Option 10 specifies 24.33Gbps for a 20MHz signal. For a 100 MHz signal, 3 sectors, and 8 antenna/sector, the line rate could be 148 Gbps!
- As values of all the related factors are expected increase drastically in 5G New Radio, it will be extremely difficult to support the CPRI fronthaul bandwidth using current PON systems
- NGMN Alliance recommended the total round-trip latency budget between cell site and the core network must be <10ms, and preferably <5ms. The delay budget allocated to the backhaul link is typically 1/3 of this budget
- Small Cell Forum classifies backhaul system latency as <1ms (good); 1-5ms (OK); >5ms (poor)
Mobile Fronthaul evolution towards Centralized/Cloud RAN

SCENARIO 1

- Metro aggregation
- Central Office
- Fronthaul – legacy
 - CPRI/OBSAI over fiber
- Cell site
- BBU Cluster

SCENARIO 2

- Metro aggregation
- Central Office
- Fronthaul – new RAN
 - Split Processing
 - Ethernet over fiber
- Cell site
- Gateway

DU: Distributed Unit
DU pool: Distributed Unit pool
Gateway: Network Gateway
Capacity and latency requirements for Scenario 1

- Same capacity requirements as in the traditional case
- Total round-trip delay = processing time in RU + 2x transit time in fiber + processing time in DU
 - Max round-trip processing delay per link is 5 μs (CPRI spec v7.0, clause 7.1.8.1)
 - Max total round-trip delay between RU and DU is therefore $\sim 105 \mu s/10km$ or $\sim 210 \mu s/20km$ (note: round trip delay in fiber is 10 μs/km)
- NGFI (next gen fronthaul interface) specification:
 - Transport equipment one-way delay is $\sim 220 \mu s$, which requires $< 10 \mu s$ one-way forwarding time per equipment for a 20km link
Capacity and latency requirements for Scenario 2

Many potential functional split options!

Source: FSAN
Capacity requirements for different functional split options

<table>
<thead>
<tr>
<th>Functional Split Option</th>
<th>System Capacity for Different Signal Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 MHz</td>
</tr>
<tr>
<td>Option 1</td>
<td>0.38 Gbps</td>
</tr>
<tr>
<td>Option 2</td>
<td>0.36 Gbps</td>
</tr>
<tr>
<td>Option 3</td>
<td>0.36 Gbps</td>
</tr>
<tr>
<td>Option 4</td>
<td>0.36 Gbps</td>
</tr>
<tr>
<td>Option 5</td>
<td>0.4 Gbps</td>
</tr>
</tbody>
</table>

Source: FSAN
NGMN 5G system latency requirements

- NGMN stated the E2E RTP latency for a 5G system could be < 1 ms. What are these use cases? Do they need to, can they, be supported by new generation PON?
- **Ultra-low latency use case:**
 - Tactile internet where humans will wirelessly control real and virtual objects, manufacturing, remote medical care, autonomous cars
- **Ultra-high reliability & ultra-low latency use case:**
 - Collaborative robots in manufacturing: not valid
 - Automated traffic control and driving, remote object manipulation (e.g. remote surgery)
- To support these machine type communications use cases, our estimate for the PON segment is 10-20 μs for round-trip latency not including the fiber path delay

Use case category

<table>
<thead>
<tr>
<th>Use case category</th>
<th>User Experienced Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access in dense areas</td>
<td>DL: 300 Mbps, UL: 50 Mbps</td>
<td>10 ms</td>
<td>On demand, 0-100 km/h</td>
</tr>
<tr>
<td>Indoor ultra-high broadband access</td>
<td>DL: 1 Gbps, UL: 500 Mbps</td>
<td>10 ms</td>
<td>Pedestrian</td>
</tr>
<tr>
<td>Broadband access in a crowd</td>
<td>DL: 25 Mbps, UL: 50 Mbps</td>
<td>10 ms</td>
<td>Pedestrian</td>
</tr>
<tr>
<td>50+ Mbps everywhere</td>
<td>DL: 50 Mbps, UL: 25 Mbps</td>
<td>10 ms</td>
<td>0-120 km/h</td>
</tr>
<tr>
<td>Ultra-low cost broadband access for low ARPU areas</td>
<td>DL: 10 Mbps, UL: 10 Mbps</td>
<td>50 ms</td>
<td>on demand: 0-50 km/h</td>
</tr>
<tr>
<td>Mobile broadband in vehicles (cars, trains)</td>
<td>DL: 50 Mbps, UL: 25 Mbps</td>
<td>10 ms</td>
<td>On demand, up to 500 km/h</td>
</tr>
<tr>
<td>Airplanes connectivity</td>
<td>DL: 15 Mbps per user, UL: 7.5 Mbps per user</td>
<td>10 ms</td>
<td>Up to 1000 km/h</td>
</tr>
<tr>
<td>Massive low-cost/long-range/low-power MTC</td>
<td>Low (typically 1-100 kbps)</td>
<td>Seconds to hours</td>
<td>on demand: 0-500 km/h</td>
</tr>
<tr>
<td>Broadband MTC</td>
<td>See the requirements for the Broadband access in dense areas and 50+Mbps everywhere categories</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ultra-low latency

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: 50 Mbps, UL: 25 Mbps</td>
<td><1 ms</td>
<td>Pedestrian</td>
</tr>
</tbody>
</table>

Resilience and traffic surge

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: 0.1-1 Mbps, UL: 0.1-1 Mbps</td>
<td>Regular communication: not critical</td>
<td>0-120 km/h</td>
</tr>
</tbody>
</table>

Ultra-high reliability & Ultra-low latency

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: From 50 kbps to 10 Mbps, UL: From a few bps to 10 Mbps</td>
<td>1 ms</td>
<td>on demand: 0-500 km/h</td>
</tr>
</tbody>
</table>

Ultra-high availability & reliability

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: 10 Mbps, UL: 10 Mbps</td>
<td>10 ms</td>
<td>On demand: 0-500 km/h</td>
</tr>
</tbody>
</table>

Broadcast like services

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>E2E Latency</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL: Up to 200 Mbps, UL: Modest (e.g. 500 kbps)</td>
<td><100 ms</td>
<td>On demand: 0-500 km/h</td>
</tr>
</tbody>
</table>
Conclusion for 5G MFH

• Both capacity and latency requirements depend on the choice of functional split point
• 100G-EPON should be able to support the MFH bandwidth requirements for the new RAN scenario with split processing
• Latency requirements of machine-type communications are extremely stringent: estimate for the PON segment is 10-20 μs (round-trip delay) not including fiber path delay. New innovations will be needed
• Impact on specifications of channel bonding, downstream traffic scheduling, and DBA optimization should be considered
• IEEE 802.3ca should coordinate the effort with other SDOs to choose the preferred functional split option
Big Video Services

- How much bandwidth do we need to stream a VR video?
- What is the latency requirement?
- Can the existing network support a good VR experience?
How much bandwidth do we need to stream a VR video?

- Non-VR video stream with H.265 encoding (more detail in the appendix):
 - 4K format: 12-15 Mbps/video stream (OTT), 22.5-75 Mbps (IPTV)
 - 8K format: 48-60 Mbps/video stream (OTT), 90-300 Mbps (IPTV)

- VR video stream:
 - 4K format is the bare minimum starting point. 8K is preferred
 - Typical video format for VR is 2:1 as opposed to 16:9. The same video for regular TV is converted to 2:1 by the camera or headset for VR viewing
 - Need two streams for stereoscopic experience: >600 Mbps/VR stream (1200 Mbps for VR+) could be needed
 - Other video encoding techniques to reduce file size are being explored, e.g., Cube Maps by Facebook
Can the existing network support a good VR experience?

- Existing network should be sufficient to support the latency requirement of VR video streaming
- Packet loss rate (1 error/8 hrs) is within expectation (<1.0 x 10^-5) when tested in a G-PON network
- Interactive VR will have more stringent requirements, which is unknown at the moment. Synchronization between video and audio could add another dimension of complexity

<table>
<thead>
<tr>
<th>Format</th>
<th>Bandwidth</th>
<th>RTT Time Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic 4K</td>
<td>45Mbps</td>
<td>< 20 ms</td>
</tr>
<tr>
<td>Basic 8K</td>
<td>180 Mbps</td>
<td>< 16 ms</td>
</tr>
<tr>
<td>VR+</td>
<td>1200 Mbps</td>
<td>< 12 ms</td>
</tr>
</tbody>
</table>
Conclusion and proposal

• Mobile fronthaul/backhaul services for future 5G networks demand high capacity and low latency
• Big video services will require high capacity network. Interactive VR services have unknown stringent latency requirements
• Proposal of topics to further develop in standards:
 - Further latency reduction in the case of channel bonding
 - Optimize downstream traffic scheduling to reduce latency
 - Optimize DBA to minimize latency: grants always ready for upstream traffic. Grant to one ONU could be limited to microsecond level
Thank You 谢谢！
Bandwidth and other requirements for different video formats

IPTV broadcast

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Quasi 4K</th>
<th>Basic 4K</th>
<th>Ultra 4K</th>
<th>Quasi 8K</th>
<th>Basic 8K</th>
<th>Ultra 8K</th>
<th>VR</th>
<th>VR+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>3840x2160</td>
<td>3840x2160</td>
<td>3840x2160</td>
<td>7680x4320</td>
<td>7680x4320</td>
<td>7680x4320</td>
<td>3840x2160</td>
<td>7680x4320</td>
</tr>
<tr>
<td>Frame rate</td>
<td>30P</td>
<td>60P</td>
<td>120P</td>
<td>30P</td>
<td>60P</td>
<td>120P</td>
<td>120P</td>
<td>120P</td>
</tr>
<tr>
<td>Color depth</td>
<td>8bit</td>
<td>10bit</td>
<td>12bit</td>
<td>8bit</td>
<td>10bit</td>
<td>12bit</td>
<td>12bit</td>
<td>12bit</td>
</tr>
<tr>
<td>Average bit rate (bps)</td>
<td>15M</td>
<td>30M</td>
<td>50M</td>
<td>60M</td>
<td>120M</td>
<td>200M</td>
<td>200M</td>
<td>800M</td>
</tr>
<tr>
<td>Bandwidth requirement (bps)</td>
<td>22.5M</td>
<td>45M</td>
<td>75M</td>
<td>90M</td>
<td>180M</td>
<td>300M</td>
<td>300M</td>
<td>1200M</td>
</tr>
</tbody>
</table>