Meeting Minutes

Group: IEEE P802.3ca 100G-EPON Task Force

Event: Interim meeting

Date: From: 5/23/2017 To: 5/25/2017

Location: New Orleans, LA USA

Opening

5/23/2017 9:00:00 AM The meeting was called to order by the Chair. Duane Remein volunteered to serve as recording secretary. The Chair held Introductions and gave the opening report.

Motion #1

Approve the agenda for Task Force meeting to be held May 23-26, 2017 in New Orleans LA located in file http://www.ieee802.org/3/ca/public/meeting_archive/2017/05/agenda_3ca_1_0517.pdf

Moved: Duane RemeinSecond: Kevin NollProcedural (> 50%)Motion Passed by voice without opposition

Motion #2

Approve the Minutes for Task Force meeting held March 2017, in Vancouver, BC located in file http://www.ieee802.org/3/ca/public/meeting_archive/2017/03/minutes_unapproved_3ca_0317.pdf

Moved: Duane Remein Second: Glen Kramer

Procedural (> 50%) Motion Passed by voice without opposition

The chair reviewed the Task Force Web site / password, IEEE rules, and the IEEE patent policy.

5/23/2017 9:17:00 AM The chair made a call for patents, no response was made.

The Chair reviewed the IEEE Participation guidelines and process. Future meeting polls were taken.

5/23/2017 9:25:00 AM

Presentations

All presentation are shown in the follo	owing format	
Title	Presenter	Affiliation
Comment		
File name		
Received comments against D0.3	Marek Hajduczenia	Charter

Reviewed comments against Draft 0.3 and agreed on resolution. 802d3ca_D0_3_received.pdf

Motion #3

Power budget equivalent to PR10 (20 dB) shall not be in scope for 802.3ca.

Moved: Marek HajduczeniaSecond: Glen KramerFor: 24Against: 2Abstain: 16Technical (≥ 75%)Motion Passed

The challenges of supporting 25G/10G o	pperation	
	Glen Kramer	Broadcom
This presentation provided a summary of upstream direction. kramer_3ca_2_0517.pdf	f difficulties supporting both 10 Gb/s and	25 Gb/s rates in the
5/23/2017 10:55:00 AM	Break	
10Gbps US option for 25G aymmetric PC	DN Dianbo Zhao	Huawei Technologies
This presentation provided a possible sol direction. zhao_3ca_2_0517.pdf	ution for supporting 10 Gb/s and 25 Gb/s	in the upstream
MPCP messages	Duane Remein	Huawei Technologies
This presentation proposed an augmenta Request, Register and Register Ack) for 1	ation to the MPCP message set (Discovery 00G-EPON.	GATE, Register

remein_3ca_2_0517.pdf

MPCP+ messages	Duane Remein	Huawei Technologies
This presentation proposed an message set for 100G-EPON. remein_3ca_1b_0517.pdf	augmentation (Forced Report flag & Sleep	Request) to the MPCP
5/23/2017 12:20:00 PM	Lunch, Reconvened at 1:35 PM	
/S/ Character Alignment	Glen Kramer	Broadcom
	etion of idle characters so as to align /S/ ch ficit idle count mechanism used in 10G-EPC	-
LDPC for 100G EPON	Dianbo Zhao	Huawei Technologies
This presentation provided an a zhao_3ca_1_0517.pdf	analysis of a potential high gain FEC, 16K LD	PPC, for 100G-EPON.
FEC proposal for NGEPON	Mark Laubach	Broadcom
-	analysis of a potential high gain FEC, LDPC (sentation was information on the Gilbert bu	
Omega 256 structured interlea		Deve have
Ancillary file accompanying laul laubach_3ca_2_0517.txt	Mark Laubach bach_3ca_1_0517.pdf	Broadcom
Parity code matrix for LDPC(18 Ancillary file accompanying laul laubach_3ca_3_0517.txt		Broadcom
High gain FEC and CDR locking	for 25G NRZ	
	Vincent Houtsma	Nokia Bell Labs
This presentation provided an a 25G CDR at high BER (1E-2) may houtsma_3ca_1_0517.pdf	analysis of clock and data recovery for 25G y be very difficult.	signals and concluded that

5/23/2017 3:00:00 PM Break

Evaluation Results on Lock Performance of 10G and 25G CDRs

Daisuke Umeda

This presentation provided an analysis of clock and data recovery for 25G signals using commercially available devices. The conclusion is that lock at 1E-2 may be very difficult and the high BER CDR for 100G-EPON needs additional study.

umeda_3ca_1_0517.pdf

Tilted Power Budgets

Analysis of Multi-channel Crosstalk with SOA as Pre-amplifier in 100G EPON

This presentation provided an analysis SOA gain in the presence of an interfering signal of varying power (i.e., crosstalk). The conclusion is that for signals with a large power differential there may be a significant crosstalk penalty. liudekun_3ca_1_0517.pdf

Dekun Liu

This presentation proposed a 100G-EPON power budget that is tilted (skewed over spectrum) to account for WDM filter losses between the various wavelengths. effenberger_3ca_1_0517.pdf

Frank Effenberger

SOA pre-amplified upstream signal power in 100G-EPON

Hanhyub Lee

This presentation provided an analysis of the impact of a high power signal (min insertion loss) on a SOA Preamplified systems for 100G-EPON. The conclusion was that use of an SOA in conjunction with an APD may result in overpowering the APD when receive power is maximum. lee_3ca_1_0517.pdf

PR30 Link Budget Considerations from a Component Perspective

This presentation provided an analysis of the optical budget for 25/50/100G-EPON from the perspective of an optical component vendor. jackson_3ca_1b_0517.pdf

Ken Jackson

100G-EPON power budget suggestions Yong Guo

This presentation provided a power budget analysis for 100G-EPON and suggested APD sensitivity be increased by 0.8 dB in 25G optical budget. For 100G-EPON DS a further improvement of 1 DB in the APD

ETRI

Sumitomo

ZTE Corporation

Sumitomo Electric Industries, LTD.

Huawei Technologies

Huawei Technologies

is expected and remaining 4 dB gap be made up with a post amp. For the 100G-EPON US an additional improvement o f1 DB in the DML output power is expected and the remaining 4 dB gap be made up with a pre amp.

guo_3ca_2_0517.pdf

Are uncooled optical transceivers for 25Gb/s DS0/US0 practical?

This presentation suggested restricting 100G-EPON lasers to cooled devices may provide system benefits that outweigh downsides of such a solution. park_3ca_1_0517.pdf

Some more optical vendors input on 25G transmitters

Dekuli Liu

This presentation provided vendor feedback on potential optical transmitters for 100G-EPON. liudekun_3ca_4_0517.pdf

5/23/2017 6:00:00 PM Recessed

5/24/2017 9:03:00 AM Reconvened

PON ONU Requirements in Broadband Networks

Phil Miguelez

Comcast

This presentation proposed that the 10G wavelength edge incursion into 100G wavelengths might be minimized due to restricted temperature range operations. miguelez_3ca_1_0517.pdf

Feasibility analysis of DML with 7nm Pa	ass band	
	Dekun Liu	Huawei Technologies
This presentation provided an analysis on heaters only rather than a TEC.	of a 7 nm pass band for 100G-E	PON transmitters using lasers with
liudekun_3ca_5_0517.pdf		

Dekun Liu

OE Solutions America

Huawei Technologies

kun Liu

Moonsoo Park

Required Spectrum Mask for 25Gb/s Burs	t Mode Signal Moonsoo Park	OE Solutions America
This presentation provided an analysis of k varying sized bursts. With the exception of park_3ca_2b_0517.pdf	ourst mode transmitter wa	velength shift for 25G lasers with
25G/10G/1G triple-rate upstream receive	r based on single 10G APE Vincent Houtsma	D/TIA Nokia Bell Labs
This presentation provided an analysis of a houtsma_3ca_2_0517.pdf	a potential triple rate (1/10)/25 Gb/s) OLT receiver.
	onvened 11:05 AM.	
25G DML Wavelength Shift Measurement Mode	t for 25G EPON ONU Wave	elength Shift Estimate with Burst
	Huanlin Zhang	Applied Optoelectronics, Inc. (AOI)
This presentation provided an analysis of b bursts (all data from O Band devices). zhang_3ca_1_0517.pdf	ourst mode transmitter wa	velength shift with varying sized
A new compromise wavelength plan for 1	LOOG EPON	
	Dekun Liu	Huawei Technologies
This presentation proposed YAWaP (Yet A liudekun_3ca_2_0517.pdf	nother Wavelength Plan).	
100G EPON Wavelength plan comparison	Dekun Liu	Huawei Technologies
This presentation provided an analysis of t liudekun_3ca_3_0517.pdf	hree proposed wavelength	h plans.
5/24/2017 12:03:00 PM Lunch, Re	convened at 1:30 PM	
Wavelength Plan Z	Frank Effenberger	Huawei Technologies
This presentation provided YAWaP with a low cost 25G; remaining channels were US		

1200 THz spacing. effenberger_3ca_2_0517.pdf

Suppression of Four-Wave-Mixing (FWM) for	or 100G-EPON	
	Xiang Liu	Futurewei Technologies, Huawei R&D USA
This presentation provided information on a liuxiang_3ca_1a_0517.pdf	possible solutio	n to 4 wave mixing in 100G-EPON systems.
Unified Wavelength Grid and Plan for 100G	-EPON	
-	Xiang Liu	Futurewei Technologies, Huawei R&D USA
This presentation proposed a fixed waveleng liuxiang_3ca_2_0517.pdf	gth grid for 100G	i-EPON systems.
5/24/2017 3:05:00 PM Break, reconvened a	at 3:30	
Selection of 100G-EPON wavelength plan	Yong Guo	ZTE Corporation
This presentation compares several propose guo_3ca_1_0517.pdf	d wavelength pl	ans and proposes YAWaP.
100G EPON resilience requirements for net	work transport a	applications
	Eugene Dai	Cox Communications
This presentation proposed a YAWaP adding dai_3ca_1_0517.pdf	g a 5th waveleng	th to provide protection in a 100G system.
FEC proposal for NGEPON - update	Mark Laubach	Broadcom
An update to laubach_3ca_1_0517.pdf, answ	wers two questic	ons asked; relative die size and extent of

An update to laubach_3ca_1_0517.pdf, answers two questions asked; relative die size and extent of optimization. laubach_3ca_4_0517.pdf

Motions & Straw Polls

				Motion #4	ŧ4
D0.3 by i		hanges as		•	draft version D0.4 from current draft version 0_3_approved.pdf and other changes as
Moved:	Marek Hajdu	czenia		Second: Alan Bro	rown
For: 3 Technica Motion P	(≥ 75%)	Against:	0	Abstain:	1

Motion #5proposed and tabled by motion #6

Adopt LDPC as the FEC method.

Moved: Mark Laubach

Second: Zhao Dianbo

Motion #5 was tabled by Motion #6.

				Motion #6
Move to	table motion #	# 5.		
Moved:	Guo Yong			Second: Zhang Junwen
For: 1 Procedur Motion F	ral (>50%)	Against:	12	Abstain: 9

				Motion #	7
Accept th	ne /S/ characte	er alignmen	t met	thod as presented	in kramer_3ca_1_0517.pdf
Moved:	Glen Kramer			Second: Duane	Remein
For: 2 Technical Motion P	l (≥ 75%)	Against:	0	Abstain:	11

Motion #8

The upstream channel format of the asymmetric 25/10G ONU shall be identical to the upstream channel format of the 25/25G ONU with the exception of line rate which shall be 10.3125 GBd.

Moved: Glen KramerSecond: Bill PowellFor: 16Against: 0Abstain: 19Technical (≥ 75%)Motion Passed

			Motion #9
Adopt the 7-9.	e proposed definition	ons for 100	G-EPON MPCPDUs shown in remein_3ca_2b_0517.pdf slides 2-4
Moved:	Duane Remein		Second: Glen Kramer
For: 2 Technical Motion P	(≥ 75%)	nst: 2	Abstain: 4

Motion #10	
Add a Forced Report flag to the GATE message as proposed in remein_3ca_1b_0517.pdf slide 3	
Moved: Duane Remein Second: Glen Kramer	
For: 28 Against: 0 Abstain: 7 Technical (≥ 75%) Motion Passed	

				Motion #11
Move to	take motion #	5 off the ta	ble.	
Moved:	Glen Kramer			Second: Marek Hajduczenia
For: 1 Procedur Motion P	al (> 50%)	Against:	10	Abstain: 14

Motion #12

Move to amend motion #5 to read: Adopt LDPC as the FEC method. FEC performance analysis shall include both AWGN and the Gilbert-Elliot burst noise model.

Moved: Bill Powell

Second: Marek Hajduczenia Abstain: 9

For: 20 Against: 7 Technical (≥ 75%) Motion Failed

				Motion #13			
Move to call the question on motion #5.							
Moved:	Frank Effenb	erger		Second: Marek Hajduczenia			
For: 3		Against:	1	Abstain: 2			
Procedural (> 50%)							
Motion F	Passed						

				Motion #5
Adopt LD	PC as the FEC	method.		
Moved:	Mark Laubac	h		Second: Zhao Dianbo
For: 1 Technica Motion F	l (≥ 75%)	Against:	10	Abstain: 10

5/24/2017 5:55:00 PM Recessed

5/25/2017 9:00:00 AM Reconvened

Motion #14

In the case where one active wavelength channel is inside the zero-dispersion window, polarization control is optionally applied to suppress the FWM impairment.

Moved: Xiang Liu Second: none

The Motion died for lack of a second

	Motion #15						
The wave	elength plan sh	all align to	ITU-T G.694.	1 with poss	ible exception of wideband channels.		
Moved:	Xiang Liu		Second	l: Dekun L	iu		
For: 3	3	Against:	17	Abstain:	12		
Technica	l (≥ 75%)						
Motion F	ailed						

Straw Poll #1

	he channel crosstalk in the shared pre-amplifier in 100G EPON, can you live with PON uses the single scheduling domain DBA as shown in ndf slide 15?
Yes:	0
No:	19
Abstain/No opinion:	12

Straw Poll #2					
Straw poll on wavelength plans. Vote	e for 1st	choice, 2r	nd choice, a		
Plan:	1st	2nd	Hate it		
Plan A (All WDM):	12	6	0		
Plan B (TDM for US0 & USx):	6	5	7		
Plan C (Compromise WDM + TDM):	0	8	7		
Plan Z (WDM + 20 nm US0):	5	6	6		
Plan PA (WDM + Delayed TDM):	3	7	1		

	Motion #16							
Move to accept an O-Band base channel plan that only supports WDM coexistence with 10/10G-EPON.								
Moved:	Phil Miguelez		Sec	cond: Alex Un	าทอง			
For: 1 Technica Motion F	. ,	Against:	10	Abstain:	4			

			Ν	Motion #1	7
Move to with 25G	•	and base ch	nannel plan	that only sup	oports WDM coexistence with 10/10G-EPON
Moved:	Ed Walter		Secon	nd: Alan Bro	own
For: 1 Technica Motion F		Against:	8	Abstain:	3

5/25/2017 10:25:00 AM Took a muc

Took a much needed break, reconvened at 11:00 AM.

The Group had an open discussion regarding wavelength plans. One new idea that was raised was that we consider greenfield and brownfield deployment separately. Reviewed one presentation submitted from the floor.

Wavelength plan to shoot at Marek Hajduczenia

Charter

YAWaP featuring a less than 20 nm band targeted for residential use (indoors). hajduczenia_3ca_2_0517.pdf

Motion #18							
Adopt the LDPC(18493,15677) 0.848 rate FEC code and interleaver as presented in laubach_3ca_1_0517.pdf and use of pre-coding for downstream and upstream channels. The Omega 256 seed code as in laubach_3ca_2_0517.txt. The LDPC parity code matrix as in laubach_3ca_2_0517.txt.							
Moved: Mark Laubach Second: Marek Hajduczenia							
For:10Against:10Technical (≥ 75%)Motion Failed							

The Chair lead a discussion on work items for future meetings; specifically addressing wavelength plans. The following action items were taken (Assignee / Due):

Narrowing first channel from 20 nm to something less (Marek Hajduczenia / Jun 8). Follow up on Greenfield/Brownfield suggestion (Glen Kramer / Jun 22). Investigate SOA cross gain modulation (Dekun Liu, Earl Parsons / Berlin, Jun 22). Analyze suitability of >1330 nm wavelength for DML (Frank Effenberger / Jun 22). Further investigate FEC presented in laubach_3ca_1_0517.pdf (Mark Laubach / Jun 22). Investigate CDR lock at 1E-2 and channel model (Frank Effenberger / Berlin). Provide additional details on Forced Report (Duane Remein / Berlin).

Motion #19

Move to adjourn

Moved: Duane Remein Second: Mark Hajduczenia Procedural (> 50%) Motion Passed by voice without opposition

5/25/2017 11:57:00 AM

Meeting was adjourned.

Attendance

		23-	24-	25-
Full Name	Affiliation	May	May	May
Alan Brown	Adtran	X	X	X
Ayla Chang	Huawei	X	x	х
Frank Chang	Inphi	x	x	
David Chen	Applied Opto Electronics Inc	x		
Barry Colella	Source Photonics	х	x	x
Eugene Dai	Cox Communication	х	x	
Kyeong-Hwan Doo	ETRI	x	x	x
Frank Effenberger	Huawei	х	x	x
Yong Guo	ZTE Corp	х	x	x
Marek Hajduczenia	Charter	x	x	x
Ed Harstead	Nokia	x	x	x
Vincent Houtsma	Nokia, Bell Labs	x	x	x
Kenneth Jackson	Sumitomo	x		
John Johnson	Broadcom LTD.	x	x	x
Curtis Knittle	CableLabs	x	x	x
Glen Kramer	Broadcom LTD.	x	x	x
Mark Laubach	Broadcom LTD.	x	x	x
Grey LeCheminant	Keysight Tech	x	x	
Hanhyub Lee	ETRI	x	x	x
David Li	Ligent	x	x	
Dekun Liu	Huawei	x	x	x
Phil Miguelez	Comcast	x	x	x
Kevin Noll	Tibit Communication	x	x	x
Moonsoo Park	OE Solutions America	x	x	x
Earl Parsons	CommScope	x	x	x
Michael Peters	Sumitomo	x	x	x
Bill Powell	Nokia	x	x	x
Duane Remein	Huawei	х	x	х
Naoki Suzuki	Mitsubishi Electric	х		
Steve Swanson	Corning		x	
Ryan Tucker	Charter	х	x	х
Daisuke Umeda	Sumitomo	x	x	х

Alexander Umnov	Corning	x	x	x
Huanlin Zhang	Applied Opto Electronics Inc	x	x	x
Wanquan Peng	Huawei	x	x	x
Qing Xu	Belden	x		
Dianbo Zhao	Huawei	x	x	x
Edward Walter	AT&T	x	x	x
Adrian Young	Leviton	x		
Atul Srivastava	NEL-America	x		
Xiang Liu	Huawei	x	x	x
Hsiu-Che Nang	Applied Opto Electronics Inc	x		
Junwen Zhang	ZTE	x	х	x
Allard van der Horst	Semtech	х	х	x
Natasha Alvarado	IEEE	x		
Yi Wang	Applied Opto Electronics Inc	x		
Bujin Guo	AOI	x	x	
I Lung Ho	AOI	x	x	x
Jonathan Goldberg	IEEE	х		x
Hal Roberts	Calix	х	х	
Scott Schube	Intel	x		
David Claussen	Charter	х	x	
Vchiyame Asami	Mitsubishi Electric	х		
Hassaan Aslan	Max Linear	х		