50Gb/s technical feasibility analysis

Dekun Liu, Huawei Stanley Shuai, Source Sep, 2017

Background

- In last Berlin meeting, the task force called for contributions on 50G PON solutions analysis.
- This contribution analyzes the different candidate technologies for 50Gb/s per wavelength, and their advantages and challenges .

50Gb/s NRZ modulation

- 50G NRZ requires very high bandwidth for optics
- There are only few 50Gb/s Tx optics with very high cost in industry, and no 50G APD by far. Feasibility of 50G APD is still not clear.
- The initial cost of 50G will be very high due to lack of application in other industry chain. (Datacenter adopts 25G Baud rate for high bit rates)

HUAWE

50Gb/s NRZ dispersion analysis

Chromatic Dispersion λ 0(nm) min 1300 - λ 0(nm) center 1312 - λ 0(nm) max 1324 8 1271 1311 1291 1351 7 1331 6 λ 0= 5.02ps/nm/km 1300 5 (m 3.34ps/nm/km 1312 4 (mn/sq) 1324 3 2 Chromatic Dispersion 1 0 -1 -2 -3 -4 -3.85ps/nm/km -5 -6 -5.94ps/nm/km -7 -8 1251 1261 1271 1281 1291 1301 1311 1321 1331 1341 1351 1361 1371 Wavelength (nm)

O+ fiber dispersion coefficient

25G/40G EML dispersion penalty comparison in O+ band 1358nm

50G NRZ dispersion penalty @1330nm (simulation)

50G NRZ	ER (dB)			
(50G EML + 50G APD)	6	8	10	
ROF @ (B2B) BER = E-3/dBm	-23.7	-24.7	-25.2	
CD penalty* after 20 km SMF <mark>@1330nm</mark>	~2.6	~2.4	~2.2	

* 50G NRZ after 20km can't reach 1E-3 BER

50G NRZ power budget analysis

	Solution	Tx Power (dBm)	Rx Sen. (dBm), @BER 1e-2	Dispersion penalty (dB) @20km, 1330nm	TDP (dB)	Power budget gap to 29dB	Power budget gap to 33dB
25G NRZ	25G EML +25G APD	+4.5	-26.2	0.2	1.5	-0.2 dB	3.8 dB
50G NRZ	50G EML +50G APD	+4.5	-22.2	2.5	3.5	5.8 dB	9.8dB
	50G EML +50G PIN	+4.5	-17	2.5	3.5	11 dB	15 dB

Due to high dispersion penalty and low sensitivity of 50G, there is a big gap to meet the 29dB and 33dB power budget without amplifier.

50G EDB

- 50G EDB still requires transmitter with 50G bandwidth , which is in very high cost and far from mature in industry.
- Dispersion penalty of 50G EDB may be still noticeable in O+ band., which will make the power budget issue more challenging.

50Gb/s DMT modulation

50G Discrete Multitone Modulation using 10G optics

- DMT requires high linearity on the optics and complex DSP, cost is very high
- After long period debating and comparison, DMT has been beaten by PAM4 in Datacenter.

"50-Gb/s/λ TDM-PON Based on 10G DML and 10G APD

25GBaud PAM4

PAM4 application in Ethernet network for data center

• PAM4 based on 25G optics , which is widely used in Ethernet network for datacenter, is the most mature technology for 50Gb/s per wavelength in industry

PAM4 band width requirement on optics

• PAM4 eye width is not twice of NRZ

- The symbol duration of PAM4 is twice of that of NRZ
- The achievable PAM4 eye width is only between 1/2 to 2/3 of the nominal eye width at the TX output
- PAM4 needs 10~20% extra bandwidth than half of NRZ bandwidth in practical

• The three vertical eyes are asymmetrical

- Even for a linear system, top and bottom eyes are not the same as the middle eye
- Transitions are comprised of symmetrical and nonsymmetrical transitions
- Impairments impact on the three eye is also different

PAM4/NRZ sensitivity impact

• The eye height is 1/3 (4.8dB) of that of NRZ in theory

 In practice, the eye height degradation is more than 1/3 due to the nonlinearity

• There will be at least 6dB sensitivity degeneration from NRZ to PAM4 modulation.

PAM4 Linearity requirement

- With the same output performance from the DAC, the optical performance will be subject to working conditions (e.g. bias etc) of components.
- Nonlinearity plays a much bigger role in PAM4; performance depends on the worst eye
- Nonlinearity starts right at TX output and each active block could add more
- The larger the signal, the more the nonlinearity becomes
- Adopting nonsymmetrical data and error slicers can help, but only to a certain extent

• DSP technology is required to compensate the nonlinearity of optics and decode the PAM4 signal

PAM4 CDR recovery

 NRZ signal transition is very simple

- Major transitions: $+3 \leftrightarrow -3$
- Minor transitions: $+3 \leftrightarrow +1$, $-3 \leftrightarrow -1$, $+1 \leftrightarrow -1$
- □ Intermediate transitions: +3 \leftrightarrow -1, -3 \leftrightarrow +1
- PAM4 needs more time to recover the signal, longer burst overhead for upstream

50Gb/s PAM4 power budget analysis

ONU receiver sensitivity and OLT launch power specs.

"50-Gb/s/λ TDM-PON Based on 10G DML and 10G APD Supporting PR10 Link Loss Budget after 20-km Downstream Transmission in the O-band", OFC. 2017.

 Take -20.7dBm@1E-2 as a starting point for 50G PAM4 analysis in continuous mode

50Gb/s PAM4 power budget analysis

	Downstream	upstream
Bit rate	50Gb/s	50Gb/s
Modulation	PAM4	PAM4
Wavelength	1336nm	1270nm
Laser type	25G EML	25G DML
Launch power	+9.8dBm (needs optical amplifier)	+12.3dBm (very difficult)
Distance	20km	20km
TDP	1.5dB	2.5 dB
sensitivity	-20.7dBm@1E-2	-19.2dBm @1E-2 (burst mode)
Power budget	29dB	29dB

- 50Gb/s PAM4 still faces a high challenge to meet 29dB power budget
- The downstream is still possible to meet the power budget with an amplifier in OLT, but the upstream seems very very challenging!

50G wavelength plan example

Summary

- Several solutions for 50Gb/s per wavelength are analyzed, 50Gb/s per wavelength is a possible technical solution which could be used for PON application.
- 50G NRZ modulation suffers high dispersion penalty even in O-band, very high initial cost.
- PAM4 based on existing 25G optics seems one most promising technology for 50Gb/s which is adopted by Ethernet standard for datacenter, but more detail study are still needed for PON application :
 - Such as optics linearity requirement , burst mode recovery time
- Power budget issue will be the key challenge for 50Gb/s per wavelength , especially for the upstream power budget.

Thank you