25G upstream wavelength

Dekun Liu Jan, 2018

www.huawei.com

HUAWEI TECHNOLOGIES CO., LTD.

Two 25G upstream window

- Two 20nm upstream windows has been defined for 25G upstream mainly due to the following reasons:
 - □ Coexistence requirement with GPON and 10G EPON→two options
 - □ Low cost on ONU transmitter, enable uncool DML \rightarrow 20nm pass band
 - $\scriptstyle \square$ Have four upstream wavelength, avoid FWM \rightarrow 1310+/-10nm for USE
- The third requirement has gone as we have agreed to remove the 100G

High CD penalty and small DS/US gap in option 1

- The dispersion penalty for 25G DML is +2dB in worst case (λ_{0 dispersion} = 1300nm), which may need EDC to overcome
- Small DS/US will result in complex package and extra insertion loss in 45 degree BiDi.
 HUAWEI TECHNOLOGIES CO., LTD.
 3

New recommendation

- Shift 25G US0-A to the left by 10nm to decrease the dispersion penalty
- DS/US gap for option 1 can be increased to 45nm
- 25G US1 can be placed in the right of US0-A if it is really needed.

HUAWEI TECHNOLOGIES CO., LTD.

DP penalty analysis for new US0-A

Optical laser wavelength distribution in commercial temperature class

- The dispersion penalty in the worst case is 1dB, but the DP will be <0.5dB at the majority case
- At least1dB OPP(TDP-TP) margin is still needed even the DP is negative
- Such small DP difference between US0-A and US0-B can be neglected if we consider ~1.5dB OPP margin
- Two 25G options can have a same PMD spec

How to specify Tx power and TDP

- Traditional way: spec the min Tx power, and specify the TDP based on the worst worst case
 - Pros: most straight forward, easy for operators and factories to test and verifiy
 - Cons: needs a big enough TDP margin to guarantee all the worst case (3dB for 10G EPON), no space for different vendors to optimize Tx based on their own technology
- Specify "Tx TDP" only
 - Pros: different vendors can optimize the Tx based on their own technology, eliminate excess TDP margin
 - Cons: give up the advantage to verify the link by power meters, more difficult to measure TDP

How to minimize the excess margin

- Define a reference transmitter based on real transmitter rather than ideal transmitter
 - Optimize the TP (sensitivity difference between reference tx and real Tx) to a small value
- Define the TDP based on major typical case, leave the vendors to guarantee the extreme worst case

Parameter	US0-B	US0-A	Unit
Wavelength range	1260 to 1280	1290 to 1310	nm
OLT RX sensitivity@1E-2 (max)	-25.5		dBm
Tx min	5		dBm
TDP(Note)	1.5		dB
Note: If a transmitter exhibits a higher penalty that specified, it can still comply if it equally			
increases the minimum launch power to compensate for extra TDP, while remaining under the			
maximum launch power			

- 1.5dB TDP are assumed based on :
 - 0.5dB TP by define a reference transmitter which is quite close to real DML Tx
 - 0.5dB DP if Tx wavelength can be limited <1306nm for uncooled Tx in commercial temperature class, or EDC can be used in OLT Rx by vendors
 - 0.5dB extra margin for unexpected reasons, such as reflection, Raman crosstalk

Summary

- As 100G has been removed in the objective and more wavelength is available now, in order to minimize the dispersion penalty, it is proposed to move 25G US0-A to 1300+/-10nm
- The dispersion penalty for new USO-A has been analyzed, the DP is less than 0.5dB at the majority case. Such a small dispersion penalty can be absorbed to the total OPP
- It' s suggested that the two options of 25G can have a same PMD spec in upstream.

Thank you www.huawei.com