

LDPC FEC gain, downstream

Bill Powell, Dora van Veen, Vincent Houtsma, Rene Bonk, Ed Harstead, Joe Galaro

January 2018 R1

1

LDPC FEC for downstream

LDPC(18493,15677) adopted for downstream, per Motion #6, minutes_unapproved_3ca_1117.pdf

2	
	Motion #6
	Adopt for the LDPC FEC for the downstream channels:
	 LDPC(18493,15677) 0.848 rate parity code matrix presented in laubach_3ca_1a_1117.pdf page
	3, and
	 the Omega256 structured interleaver presented in laubach_3ca_1_0517.pdf pages 10 and 11
	with seed code as in laubach_3ca_2_0517.txt.
	Moved: Mark Laubach Second: Duane Remein
	For: 23 Against: 2 Abstain: 4
ľ	Technical (≥ 75%) Motion Passed

LDPC downstream FEC improvement, without and with precoding

laubach_3ca_1b_0118

¹ Electrical gain over RS(255,223) of 7.1 dB. Optical gain is 0.7 to 0.9 * NECG.

- ² Capped at 15 iterations
- ³ With interleaver, precoder off
- ⁴ With interleaver, precoder on
- ⁵ No interleaver, precoder off
- ⁶ No interleaver, precoder on

⁷ Omitted from laubach_3ca_1a_1117

- Updated FEC gain simulation values from laubach_3ca_01b_0118, p.8
- (optical FEC gain) based on range of APD curves w/varying Shot/Thermal noise (dBo/dBe: 0.7-0.9)
- Minimum optical gain 1.48 dB relative to RS(255,223) under worst case conditions (G-E noise, precoding), with or w/o Interleaver

[\] Previous parity matrix

New parity matrix

Updated

Backup: Burst errors in continuous mode transmission-- experimental Error statistics for 10G CM and 25G CM transmission

- In houtsma_3ca_2_1117 we showed the occurence of bursty errors for 25G CM transmission at high BER
- Earlier, in jinglei_3ca_1_0717 it was found that errors in a 10G CM transmission experiment at BER=1e-2 are also bursty (>16% of errors are burst errors)

New Slide

Updated

Choosing a FEC improvement for 25G ONU receiver sensitivity

- The impact is on **ONUs**, therefore due to all the uncertainties it is best to be conservative
 - choose the FEC gain corresponding to the Gilbert-Eliot burst model. Burst errors can be caused by
 - ISI
 - CDRs operating at high 1e-2 BER
 - choose the value at the low end of the dBo range
- If using the Gilbert-Eliot burst model, should take advantage of the precoding improvement
- Therefore we propose to select 1.48 dBo => ~1.5 dBo as the downstream FEC gain compared to 10G EPON RS(255,223).
- This value will be used to adjust the ONU receiver sensitivity specification based on 1e-3 input BER

