
1

This is an alternative suggested remedy for the comment #182.

The Draft 2.0 has the following text:

The draft does not formally show the LocalTime being latched when ESH is received. Note that the
ProcessTimestamp() function is executed only after the MAC has received the entire MPCPDU and has
verified the FCS, i.e., much later than timestamp reference time. This is the same approach we used in
802.3av and we never formally showed latching the MPCPDU receive time there either. However, if we
decide to be more formal in 802.3ca, here is the way to do it:

1) MCRS Output process generates MCRS_ESH[ch].indication() every time it reads an ESH from
the ENV_RX buffer. This indication is similar to TS_RX.indication() primitive used by the Clause
90 for time synchronization.

2

Figure 143–16—MCRS Receive Function, Output Process state diagram

143.3.1.2.3 MCRS_ECH[ch].indication(Llid) primitive

The Output Process (see Figure 143–16) generates the MCRS_ECH[ch].indication(Llid) primitive every time an
ESH EQ is read from the ENV_RX buffer. This primitive causes the MPMC Control Parser Process (see 144.2.1) to
generate a local timestamp (i.e., to latch the local MPCP time) representing the arrival time of ESH EQ.

2) The MPMC Control Parser latches LocalTime value into LatchedTime[LLid] variable at the
moment it receives MCRS_ESH[ch].indication() primitive.

rCol = NUM_CHNEXT_COL
rCol++

BEGIN

READ_EQ
OutEQ ⇐ EnvRx[rCol][rRow]
EnvRx[rCol][rRow] ⇐ IEI_EQ

OutEQ = RATE_ADJ_EQ

UCT

OutClk

else

IsHeader(OutEQ)

else

PROCESS_HEADER
LinkId[rCol] ⇐ OutEQ<48:63>
EnvLeft[rCol] ⇐ OutEQ<18:39>

CHECK_ENV_SIZE

EnvLeft[rCol] > 0

OutxEQ<16> = ES_HEADER

else

INSERT_PREAMBLE
OutEQ ⇐ PREAMBLE_EQ

UCT

else

UCT
UPDATE_ENV_SIZE
EnvLeft[rCol]--

OUTPUT_ENV_DATA
OutputToMAC(LinkId[rCol], OutEQ)

UCT

INIT
rRow ⇐ 0NEXT_ROW

rCol ⇐ 0
rRow++

SIGNAL_ESH
MCRS_ESH[rCol].indication(LinkId[rCol])

3

Figure 144–5—Control Parser state diagram

LatchedTime[]

Type: An array of 32-bit unsigned integers

Description: Each element of this array represents the value of LocalTime variable (see 144.2.1.2) latched
at the moment when the MCRS_ESH.indication(Llid) primitive was generated. The elements of the array
are indexed by the Llid values.

TsDelta

Type: 32-bit signed integer

Description: This variable represents the difference between the time that ESH was read from the MCRS
ENV_RX buffer (i.e., the LatchedTime[Plid]) and the Timestamp value in an MPCPDU that followed that
ESH. In the ONU, the TsDelta is used to adjust the LocalTime value, while in the OLT it is used as the
measurement of the round-trip time to the ONU that sourced the given MPCPDU.

opcode ∉ {SupportedOpcodes}

WAIT_FOR_FRAME

MADI[Llid](DA, SA, msdu) *
Length/Type = MAC_Control_type

BEGIN

PARSE_OPCODE
opcode | Timestamp | operand_list ⇐ msdu

opcode ∈ {TimestampOpcodes}

TO_OPCODE_SPECIFIC_PROCESS
MCII[Llid](DA, opcode, Timestamp | operand_list)

UCT

UCT

else

LATCH_LOCAL_TIME
LatchedTime[Llid] ⇐ LocalTime

UCT

MCRS_ESH[rCol].indication(Llid)

PROCESS_TIMESTAMP
TsDelta = LatchedTime[Llid] – Timestamp
ProcessTimestamp(Llid, TsDelta)

4

3) Finally, the ProcessTimestamp() function is modified to use LatchedTime instead of LocalTime.
Once we have MPCPDU Timestamp and LatchedTime values stored, it doesn’t matter when
exactly the ProcessTimestamp() function is executed

Some explanation is needed for the following line:

LocalTime -= TsDelta;

What we really need to do here is to set LocalTime to be equal to the Timestamp in received MPCPDU:

LocalTime = Timestamp;

But since the LocalTime constantly increments, the above statement would only be correct at the exact
moment of time when an ESH was read from the ENV_RX buffer. In reality, the ProcessTimestamp()
function is executed at a later time -- after the entire MPCPDU is received and FCS is checked. In
situations when we have multiple MPCPDUs following the same ESH, the delay to call the
ProcessTimestamp() function can be even larger.

That additional time elapsed since latching the ESH reception time and until the current moment is equal
to LocalTime - LatchedTime[Plid]. So, at the time when we set the LocalTime to a new value,
we need to account for the additional elapsed time, i.e.:

 LocalTime = Timestamp + (LocalTime – LatchedTime[Plid]);

The ProcessTimestamp() function doesn’t take the Timestamp value as an argument anymore. But it takes
TsDelta, which by definition is equal LatchedTime[Plid] - Timestamp. So we can substitute
the TsDelta into the above equation:

LocalTime = LocalTime – TsDelta;

Or using “-=” operator, we get

LocalTime -= TsDelta;

ProcessTimestamp(Plid, TsDelta)
{

if(FirstTimestamp[Plid])
{

// The following line is executed only in the ONU
LocalTime -= TsDelta;

 // The following line is executed only in the OLT
Rtt[Plid] = TsDelta;

TimestampDrift[Plid] = false;
FirstTimestamp[Plid] = false;

}
else

TimestampDrift[Plid] = abs(TsDelta) > DRIFT_THOLD
}

