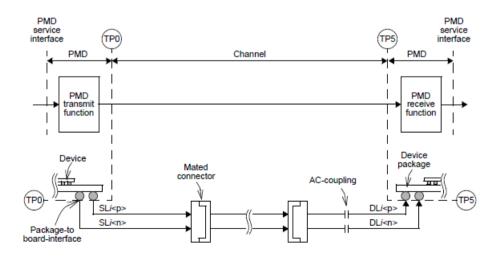
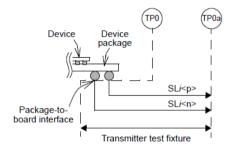
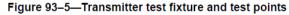
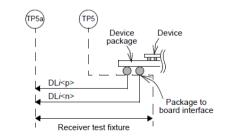
802.3cb PMD and Channel Update

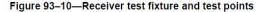
Anthony Calbone 2/4/2016

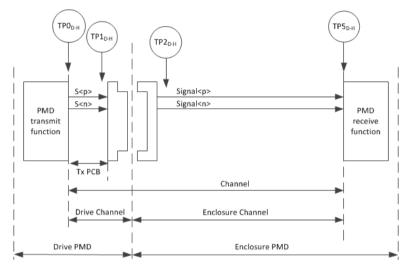


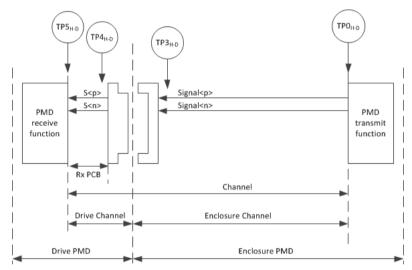

Introduction


- The presentation is meant to give an update on the PMD and channel discussions in 802.3cb to date
- The test point locations, which are described in the following slides, were adopted in the January interim meeting.
- Initial insertion loss targets were also given in a previous ad hoc, but nothing has been adopted yet.
- Measurement techniques at the various test points were also discussed at the January interim, but nothing has been adopted yet.


Backplane Reference Model Test Points


- Use 802.3bj as a reference to define ball-to-ball loss
- The is a closed and/or proprietary environment in which the only loss budget is ball-to-ball
- Test points used here are TP0, TP0a, TP5, and TP5a



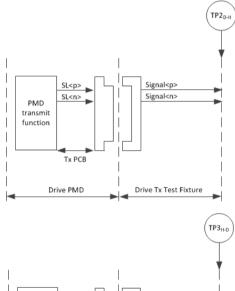

Storage Reference Model Test Points – Drive to Host

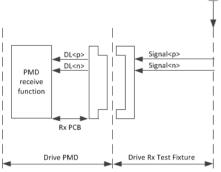
- For the storage application, it's important to budget the drive loss since it's an external component.
- The rest of the "box" is vender specific and can be any combination of cable and backplane
- This model is asymmetric, which is the reason there are two separate figures (the second one is on the next page)

Test Points	Descriptions
TPO _{D-H} to TP5 _{D-H}	The channel including the drive transmitter differential controlled impedance
	printed circuit board insertion loss and the enclosure insertion loss.
TP0 _{D-H} to TP1 _{D-H}	The drive transmitter traces
TP0 _{D-H} to TP2 _{D-H}	The mated connector pair has been included in the drive transmitter specifications.
	The recommended maximum insertion loss is
TP1 _{D-H} to TP5 _{D-H}	Enclosure channel with mated connector pair included. The recommended
	maximum insertion loss is

Storage Reference Model Test Points – Host to Drive

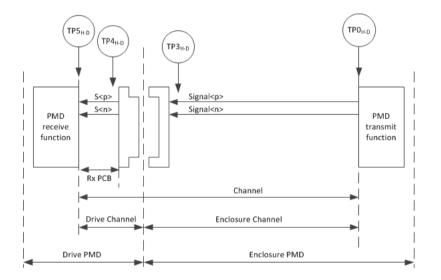
Test Points	Descriptions
TPO _{H-D} to TP5 _{H-D}	The channel including the drive receiver differential controlled impedance printed
	circuit board insertion loss and the enclosure insertion loss.
$TP4_{H-D}$ to $TP5_{H-D}$	The drive receiver traces
TP3 _{H-D} to TP5 _{H-D}	The mated connector pair has been included in the drive reciever specifications.
	The recommended maximum insertion loss is
TPO _{H-D} to TP4 _{H-D}	Enclosure channel with mated connector pair included. The recommended
	maximum insertion loss is


Storage Model – Compliance Measurement Locations


- There was much discussion at the January interim meeting regarding measurements of a storage system
- There are two use cases to consider with the enclosure
 - Enclosure design: There needs to be a reasonable way for an enclosure designer to determine compliance, or have some indication of compliance in an informative annex. This would need to be done pre-fabrication of the system.
 - Assembled enclosure: Some test points that would be available in simulation or in a design-for-test scenario will not be available in a production system. There needs to be a way to determine compliance at measureable test points.
- The drive compliance measurement locations are done after the mated connector and are more straight forward since there will be an open eye at this test point

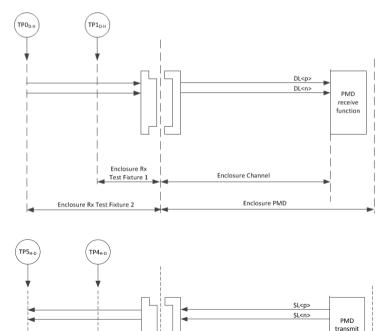
Storage Model – Drive Measurement Locations

- The wording below is for brainstorming and does not imply adoption by the working group
- TP2_{D-H}
 - Drive transmitter compliance is measured through a test fixture to provide a measureable test point
- TP3_{H-D}
 - Drive receiver compliance is measured through a test fixture to provide a measureable test point (not all, but measurements such as return loss)
- Need wording similar to 802.3bj referencing the test fixture specification
 - Example wording is shown in the table below


Test Points	Descriptions
TP2 _{D-H}	Transmitter measurements of the drive are made at $\text{TP2}_{\text{D-H}}$ using the test fixture specified in
TP3 _{H-D}	Reciever measurements of the drive are made at TP3 _{H-D} using the test fixture specified in

Storage Model – Drive Measurement Locations Cont'd

- TP4_{H-D}
 - Drive receiver tolerance testing is calibrated here. The calibration routine may "extend" the test point to TP5_{H-D}.
 - The idea is that the test is calibrated at TP4_{H-D} to ensure the drive can operate with the delivered signal at the external interface.
- Need wording similar to 802.3bj referencing the test fixture specification
 - Example wording is shown in the table below



Test Points	Descriptions
TP4 _{H-D}	Drive Rx tolerance test is calibrated at TP4 _{H-D} using the test fixture specified in

Storage Model – Enclosure Measurement Locations

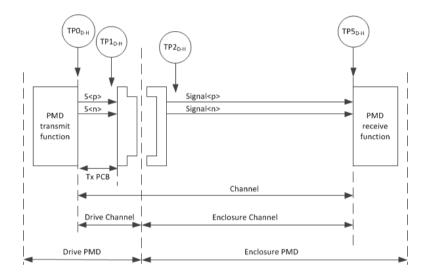
- The wording below is for brainstorming and does not imply adoption by the working group
- Test Fixture 1 would provide a low insertion method of measuring the enclosure
- Test Fixture 2 would provide a worst case drive loss to extend the measurement point to TP0_{D-H} and TP5_{H-D}
- TP4_{H-D} and/or TP5_{H-D}
 - Enclosure transmitter compliance is measured through a test fixture to provide a measureable test point.
- TP1_{D-H}
 - Enclosure receiver compliance is measured through a test fixture to provide a measureable test point (not all, but measurements such as return loss)
- Need wording similar to 802.3bj referencing the test fixture specification
 - Example wording is shown in the table below

Test Points	Descriptions
TP4 _{H-D} and\or TP5 _{H-D}	Transmitter measurements of enclosure are made here using the test fixture specified in
ТР1 _{D-H}	Receiver measurements of enclosure are made at $\mbox{TP1}_{\mbox{D-H}}$ using the test fixture specified in

Enclosure Channel

Enclosure PMD

Enclosure Tx


Test Fixture 1

Enclosure Tx Test Fixture 2

function

Storage Model – Enclosure Measurement Locations Cont'd

- TP0_{D-H} and/or TP1_{D-H}
 - Enclosure receiver tolerance testing is calibrated here.
 - The idea is that the test is calibrated such that compliance testing ensures the enclosure can operate with the delivered signal at the external interface.
- Need wording similar to 802.3bj referencing the test fixture specification
 - Example wording is shown in the table below

Test Points	Descriptions
ТРО _{D-H} and∖or	Enclosure Rx tolerance test is calibrated here using the test fixture specified in
TP1 _{D-H}	

Storage Model – Enclosure Measurement Locations Cont'd

- Concerns relate to having both measureable test points on an assembled enclosure, in addition to having the ability to predict compliance in the design phase and a design-for-test enclosure build
- Design phase:
 - Potentially use COM with TP1_{D-H} and TP5_{D-H} during the enclosure design phase and a targeted design-for-test build
 - These test points can be made available in these situations
- Assembled phase:
 - Discussions included the possibility of using COM on the "delivered signal" measured at TP4_{H-D} or TP5_{H-D} to determine compliance of an assembled enclosure transmitter. This would require the ability to use COM on a signal that has been measured with a scope.
 - Potentially using COM in combination with other measurements such as Rj with a clock-like pattern could be used

Potential Next Steps

- Ensure we're on the correct path at a high level, particularly with the storage model compliance measurement points
- Define insertion loss between defined test points
- Define measurements at each test point
- Define limits of these measurements
- Define test fixtures