802.3cb SEI Proposed Draft Details

Anthony Calbone 5/24/2016

Channel Insertion Loss

Channel Insertion Loss Spec

- Ball-to-ball insertion loss up to nyquist is determined by fitting a curve using x + y*sqrt(f) + z*f
 - Fitting against our objectives, that are based on the SAS spec
 - The plot to the right shows the fit against the reference SAS channel
- Insertion loss after nyquist is determined by OIF-CEI 3.1, equation 11-1
 - Slope = 2.694*25.8/fb, where fb = 5.15625
- Objectives vs. equation
 - IL @ 1.5625
 - Objective: 11 dB
 - Equation: 10.99925
 - IL @ 2.578125
 - Objective: 16 dB
 - Equation: 16.000125

Channel Insertion Loss Spec Cont'd

All SAS reference channels pass this spec

Tx Characteristics

Tx Characteristics

• Tx characteristics came from references shown in the table

Table 130A-1	5GSAUI host outpu	t characteristics	(TP4 _{H-D})
--------------	-------------------	-------------------	-----------------------

Parameter	Reference	Value	Units	Reference
Signaling rate per lane (range)	130A.3.1.1	5.15625 ± 100 ppm	GBd	Lo_3cb_02a_0116.pdf
DC common-mode output voltage (max)	130A.3.1.2	1.9	V	CL 92.8 (Table 92-6)
AC common-mode output voltage (max,	130A.3.1.2	30	mV	CL 92.8 (Table 92-6)
RMS)				
Differential peak-to-peak output voltage	130A.3.1.2		mV	
(max)		35		CL 92.8 (Table 92-6)
Transmitter disabled		1200		CL 92.8 (Table 92-6)
Transmitter enabled				
Differential output return loss (min.)	130A.3.1.3	See Equation	dB	Slide 7
Output waveform				
Transmitter steady-state voltage, \underline{vf} (max.)	130A.3.1.4.2	600	mV	Mellitz_cb_01_0516.pdf
Transmitter steady-state voltage, \underline{vf} (min.)	130A.3.1.4.2	285	mV	Mellitz_cb_01_0516.pdf
Linear fit pulse peak (min)	130A.3.1.4.2	0.41 vf	mV	Mellitz_cb_01_0516.pdf
Pre-cursor ratio (min)	130A.3.1.4.2	1.25	-	Wu_3cb_01_0316a.pdf
Max output jitter (peak-to-peak)	130A.3.1.6			
Randomjitter		0.15	UI	Wu_3cb_01_0316a.pdf
Deterministic jitter		0.12	UI	Wu_3cb_01_0316a.pdf
Duty Cycle Distortion		0.035	UI	Wu_3cb_01_0316a.pdf
Total jitter		0.3	UI	Wu_3cb_01_0316a.pdf
Signal-to-noise-and-distortion ratio (min.)	130A.3.1.7	16	dB	Mellitz_cb_01_0516.pdf

Tx Characteristics – Return Loss

- The return loss was originally going to be based on the SAS spec
- It turns out that a majority of the reference SAS channels fail this spec
- The 10GBASE-KR channel spec (Annex 69B) is a more lenient spec in terms of return loss
 - Some channels still fail this spec, but this is acceptable since the spec should not be stretched to meet suboptimal channel and/or test fixture designs
- Feel the Annex 69B limited to 0.75*5.15625 GHz is the best compromise

	100000 DAD
1	0
1	0
1	0
1	0
1	0
1	0
1	0
1	0
1	0.5
1	0.5
1	0.5
1	0.5
1	0.5
1	0.5
1	0.5
1	0.5
0.5	0
0.5	0
0	0
0	0
0.5	0
0.5	0
1	1
1	1
1.0	1.0
1.0	1.0
1	1
1	1
1	1
1	1
1	0.5
1	0
1	1
0.5	1
0	0
1	1
0	0.5
0.5	1
0	0
1	1
0	0.5
1	1
0	0.5
1	1

Boturn Loss 60B Boturn Loss 6A6

Rx Characteristics

Rx Interference Test

- The drive Rx interference is show n as an example
- Calibrating to worst case host Tx characteristics ensures the drive Rx can handle a worst case signal

Calibrate to worst case host Tx characteristics

Parameter	Value	Units
Transmitter steady-state voltage, <u>yf</u>	300	mV
Linear fit pulse peak	0.46 * <u>Vf</u>	mV
Total Jitter	0.3	UI
Random Jitter	0.15	UI
SNDR	20	dB

Rx Jitter Tolerance Test

- The drive Rx jitter tolerance is shown as an example
- Calibrating to worst case host Tx characteristics ensures the drive Rx can handle a worst case signal

Mated Test Fixture Reference Insertion Loss

- The reference insertion loss curve is based on Calbone_3cb_01_0316b.pdf
 - 2.7 dB @ 2.578125 GHz
 - 2.0 dB @ 1.5625 GHz
- Equation 132A-1 results
 - 2.7000301211 dB @ 2.578125 GHz
 - 2.000003125 dB @ 1.5625 GHz

 $IL_{tfref}(f) = 1.3134\sqrt{f} + 0.2293f$ for $0.05 \le f \le 5.15625 \; GHz$

where

 $f \\ IL_{tfref}(f)$

is the frequency in GHz is the reference test fixture insertion loss at frequency f

Mated Test Fixture Min and Max Insertion Loss

- The min and max insertion loss curves are bases on a scaled version of the reference insertion loss
 - +/-0.75 dB @ 2.578125 GHz was chosen as the scaling factor
- The max plot has a breakpoint @ 2.578125 GHz as does the channel insertion loss
- OIF methodology was 1st used, but the slope was too steep for a test fixture
- A scaled version of the OIF was used to reduce the slope after 2.578125 GHz
 - The OIF slope was scaled by the difference in IL @ 2.578125 GHz between the test fixture and ball-ball channel (2.7/16)

Slope using OIF directly

Slope using scaled version of OIF

Spec Vs. Measured Test fixture – Insertion Loss

• The spec correlates very well to the measured test fixture

Mated Test Fixture Return Loss

- The mated test fixture return loss was based on CL92.11
 - Equation was shifted by 3 dB to allow for margin
 - Frequency was truncated to 5.15625 GHz
- Test fixture return loss is significantly better then the drive and host return loss spec

