

Figure 128D–5—Mated test fixture return loss

128D.2.3 Mated test fixtures integrated crosstalk noise

The values of the mated test fixtures integrated crosstalk RMS noise voltages determined using Equation (128D-5)Equation (128D-6) through Equation (128D-9) for the single disturber near-end crosstalk loss shall meet the specifications in Table 128D-1.

Table 128D-1—Mated test fixtures integrated crosstalk noise

Parameter	ICN	Units
MDNEXT integrated crosstalk noise voltage	less than 1.8	mV

128D.2.3.1 Mated test fixtures integrated crosstalk noise

Since only one lane is used to transfer data between PMDs, the NEXT that is coupled into a receive lane is from the just one transmit lane. Single Disturber Near-End Crosstalk (MDNEXT) loss is determined using the individual NEXT losses. MDNEXT loss is determined from the individual pair-to-pair differential NEXT loss values using Equation (128D-5).

$$\underline{MDNEXT_loss(f)} = -10\log_{10}\left(\frac{-NL(f)}{10}\right) \quad (dB)$$
(128D-5)

for 0.05 GHz \leq f \leq 19 GHz, where,

MDNEXT_loss(f) is the MDNEXT lo	is the MDNEXT loss at frequency f,	50
NL(f)	is the NEXT loss at frequency f in dB, and	51
f	is the frequency in GHz.	52

128D.2.3.2 Mated test fixture integrated near-end crosstalk noise (ICNEXT) loss

ICN is calculated from the <u>MDFNEXT</u>. Given the <u>single disturber</u>-near-end crosstalk loss <u>MDNEXT_loss(f)</u> measured over N uniformly-spaced frequencies fn spanning the frequency range 50 MHz to 5.15625 GHz with a maximum frequency spacing of 10 MHz, the RMS value of the integrated crosstalk noise is determined using <u>Equation (128D-5)Equation (128D-6)</u> through Equation (128D-9). The RMS crosstalk noise is characterized at the output of a specified receive filter utilizing a specified transmitter waveform and the measured <u>multiple disturber</u> crosstalk transfer functions. The transmitter and receiver filters <u>areis</u> defined in Equation (128D-6) and Equation (128D-7) as weighting functions to the <u>single disturber</u> crosstalk in Equation (128D-8). The sinc function is defined by sinc(x) = $\frac{\sin(\pi x)}{(\pi x)}$.

Define the weight at each frequency f_n using Equation (128D–6) and Equation (128D–7).

$$W_{nt}(f_n) = \left(\frac{A_{nt}^2}{f_b}\right)\operatorname{sinc}^2\left(\frac{f_n}{f_b}\right) \left[\frac{1}{1 + \left(\frac{f_n}{f_{nt}}\right)^4}\right] \left[\frac{1}{1 + \left(\frac{f_n}{f_{nt}}\right)^8}\right]$$
(128D-6)

$$W_{nl}(f_n) = \binom{A_{fl}^2}{f_b} \operatorname{sine}^2 \binom{f_n}{f_b} \left[\frac{1}{1 + \left(\frac{f_n}{f_{fl}}\right)^4} \right] \left[\frac{1}{1 + \left(\frac{f_n}{f_{fl}}\right)^8} \right]$$
(128D-7)

The 3 dB transmit filter bandwidths f_{nt} and f_{ft} are is inversely proportional to the 20% to 80% rise and fall times T_{nt} and T_{ft} respectively. The constant of proportionality is 0.2365 (e.g., $T_{nt} f_{nt} = 0.2365$; with f_{nt} in hertz and T_{nt} in seconds). In addition, f_r is the 3 dB reference receiver bandwidth, which is set to 8 GHz.

The near-end integrated crosstalk noise is calculated using Equation (128D-8).

$$\sigma_{nx} = \left[2\Delta f \sum_{n} W_{nt}(f_n) 10^{\frac{-NEXT_{loss}(f_n)}{10}} \right]^{1/2}$$
(128D-8)

where Δf is the uniform frequency step of $f_{n, \text{ and}}$. <u>NEXT_loss(f)</u> is the <u>NEXT loss at frequency f in dB</u>.

The total integrated crosstalk noise is calculated using Equation (128D-9).

 $\sigma_x = \sigma_{nx} \tag{128D-9}$

The total integrated crosstalk noise for the mated test fixture is computed using the parameters shown in Table 128D–2.

Parameter	Subclause reference	Value	Unit s
Symbol rate	f_b	5.51625	GBd
Near-end disturber peak differential output amplitude	A _{nt}	600	mV
Near-end disturber 20% to 80% rise and fall times	T _{nt}	20	ps

Copyright © 2016 IEEE. All rights reserved. This is an unapproved IEEE Standards draft, subject to change.