Determining SNR ${ }_{\text {ISI }}$ for Clause 136 and Clause 137 (comment \#209 and \#210)

Richard Mellitz, Samtec

IEEE P802.350 Gb/s, $100 \mathrm{~Gb} / \mathrm{s}$, and 200 Gb/s Ethernet Task Force, Huntington Beach, CA, January 2017

Supporters

- Ed Sayre, Samtec
- Kumaran Krishnasamy, Broadcom
- Yasuo Hidaka, Fujitsu

Transmitter Test Set-Up for Clause 137

Test fixture

- Use fixture (tp0 to tp0a) with 1.4 dB at 12.89 GHz because other values must be account for.

That equates to 33 mm of the board transmission line specified in clause 92 at 100 ohms characteristic impedance

93:8.1.1 Transmitter test fixture

 showmin Eigure 9 gis-5

The insertion lossof the tegt fixtureshall be between 12 2dB and $1.6 . \mathrm{dB}$ at 12.89 GHz The magnitude of the

Thercferencefinsertion loss:of the test fixture is defined by Equation (93) Where fist the frequency in (GHz

[^0]
Test Conditions for drive swing

$\square A_{v}$ and $A_{f e}$

- Limiting factor is Tx spec: Vf min $=0.4 \mathrm{v}$
- which meets v_{f} /peak ratio (0.75)
- Vf determined with $\mathrm{Nv}=15$ for dfe12
- 12 UI from peak
- For considered values of R_{d} and Z_{c}
$\square A_{\text {ne }}$
vp-p

```
- Limiting factor is Tx spec: Vp-p 1200 mV
- which meets \(\mathrm{v}_{\mathrm{f}} /\) peak ratio
- Vp-p < 1200 mV for PRBS31 (Vp=0.6 v)
- 72 UI from peak
- For considered values of \(R_{d}\) and \(Z_{c}\)

\section*{Victim and Far End Simulation Data for COM at TPOa: \(\operatorname{Tr}=12 \mathrm{ps}, N_{v}=15\) and 1.4 dB fixture ( 33 mm )}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(A_{1}\) and \(\mathrm{A}_{\mathrm{fe}}\), volts & \(\mathrm{V}_{\mathrm{f}}\), volts & Peak/V \(\mathrm{V}_{\mathrm{f}}\) Spec = 0.75 & SNR \(\mathrm{ISI}^{\text {(dB) }}\) & \(Z_{c}\) (package impedance, \(\Omega\) ) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{d}} \text { (die } \\
& \text { termination } \mathrm{DC} \\
& \text { impedance, } \Omega \text { ) } \\
& \hline
\end{aligned}
\] & \(\mathbf{Z}_{\mathrm{p}}\) (package length, mm) \\
\hline 0.436 & 0.40018 & 0.76 & 44.7 & 83.7 & 55 & 30 \\
\hline 0.4355 & 0.40029 & 0.764 & 45.3 & 90 & 55 & 30 \\
\hline 0.4347 & 0.40015 & 0.769 & 45.9 & 102.3 & 55 & 30 \\
\hline 0.4347 & 0.40024 & 0.763 & 46.1 & 110 & 55 & 30 \\
\hline 0.39357 & 0.40004 & 0.769 & 45.8 & 83.7 & 45 & 30 \\
\hline 0.3933 & 0.40007 & 0.77 & 46.1 & 90 & 45 & 30 \\
\hline 0.39319 & 0.40008 & 0.766 & 46.3 & 102.3 & 45 & 30 \\
\hline 0.3933 & 0.40003 & 0.761 & 46.2 & 110 & 45 & 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Near End Simulation Data for com} \\
\hline & & packag & attpoa & \\
\hline \multicolumn{5}{|l|}{Tr=12 12 , \(N_{v}=15\) and 1.} \\
\hline \(\mathrm{A}_{\text {ne }}\), volts & \(\mathbf{V}_{\mathrm{p}-\mathrm{p}}\), volts & \(Z_{c}\) (package impedance, \(\Omega\) ) & \(R_{d}\) (die termination DC impedance, \(\Omega\) ) & \(Z_{p}\) (package length, mm) \\
\hline 0.6345 & 1.2005 & 83.7 & 55 & 12 \\
\hline 0.6345 & 1.200 & 90 & 55 & 12 \\
\hline 0.6345 & 1.201 & 102.3 & 55 & 12 \\
\hline 0.6345 & 1.201 & 110 & 55 & 12 \\
\hline 0.574 & 1.200 & 83.7 & 45 & 12 \\
\hline 0.574 & 1.200 & 90 & 45 & 12 \\
\hline 0.574 & 1.200 & 102.3 & 45 & 12 \\
\hline 0.574 & 1.200 & 110 & 45 & 12 \\
\hline
\end{tabular}

\section*{Host Transmitter Test Set-Up Clause 136}

Host under test model from COM


Victim and Far End Simulation Data for COM reference package at TP2 \(T r=12 \mathrm{ps}, N_{v}=15\) using package plus 151 mm COM board trace and diminico_3bs_01_0516
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(A_{1}\) and \(\mathrm{A}_{\mathrm{fe}}\), volts & \(\mathrm{V}_{\mathrm{f}}\), volts & Peak/V Spec is 0.49 & SNR \(\mathrm{ISI}^{\text {(dB) }}\) & \(Z_{c}\) (package impedance, \(\Omega\) ) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{d}} \text { (die } \\
& \text { termination } \mathrm{DC} \\
& \text { impedance, } \Omega \text { ) } \\
& \hline
\end{aligned}
\] & \(\mathbf{Z}_{\mathrm{p}}\) (package length, mm) \\
\hline 0.436 & 0.3755 & 0.474 & 30.6 & 83.7 & 55 & 30 \\
\hline 0.4355 & 0.3766 & 0.475 & 31.1 & 90 & 55 & 30 \\
\hline 0.4347 & 0.3771 & 0.476 & 31.8 & 102.3 & 55 & 30 \\
\hline 0.4347 & 0.3774 & 0.476 & 31.9 & 110 & 55 & 30 \\
\hline 0.39357 & 0.375 & 0.479 & 31.3 & 83.7 & 45 & 30 \\
\hline 0.3933 & 0.3753 & 0.48 & 31.7 & 90 & 45 & 30 \\
\hline 0.39319 & 0.3758 & 0.479 & 32 & 102.3 & 45 & 30 \\
\hline 0.3933 & 0.3759 & 0.477 & 32 & 110 & 45 & 30 \\
\hline
\end{tabular}

\section*{Recommendations}
- For Clause 136 (Table 136-11) set SNR \(_{\mid \text {| } \mid}\) min to 30 dB
- Allowing for about a dB of measurement error
\(\square\) For Clause 137 set SNR \(_{\text {ISI }}\) min to 43 dB
- 137.9.2 table: add 120D-1 modifications
- Allowing for about 2 dB of measurement error
\(\square\) Adjust drive amplitudes in COM according to tables in slides 5 and 6
- Resolve COM parameters for \(\mathrm{Z}_{\mathrm{c}}\) and \(\mathrm{R}_{\mathrm{d}}\) in Ad Hoc
\(\square\) Address Peak/Vf in Ad Hoc
- Values are a little high for clause 136
- Values are a little low for clause 137
- \(\mathrm{V}_{\mathrm{f}}\) values are also a bit high in COM package model```


[^0]:    The effects of differences between the insertion loss of an actual test fixture and the reference insertion loss are to be accounted for in the measurements. The reference insertion loss is illustrated in Figure 93-3).

