Skew Variation for 50G/100G PMDs and PMAs

IEEE P802.3cd Task Force

January 2017

Oded Wertheim, Zvi Rechtman, Piers Dawe
Mellanox Technologies

Introduction

- Draft (D1.1) skew variation values are not yet defined (TBDs).
- Multiple comments were submitted on the topic (\#33, \#34, \#74, \#80)
- 50G / 100G PMDs include both single and multi-lane PMDs that multiplex 2/4 FEC lanes.
- The multiplexing of $2 x 26.5$ GBd lanes to $1 \times 53 G B d$ is done in the module
- The Skew variation was analyzed in 802.3ba for 40G/100G. (anslow 01 0508)
- The 802.3ba analysis was used as the basis for the protocols that followed.
- SFI-5.2 specifies 1.5 UI of relative wander, poll of three vendors: ~ $1 \mathrm{UI}-1.5 \mathrm{UI}$
- 1.5UI was rounded up to 2UI / 200ps for 10G lanes.
- PMAs that mux multiple lanes $(\mathrm{n}!=\mathrm{m})$ are required to handle the skew variation (dynamic skew).
- The presentation provides a skew variation proposal for 802.3cd
- Based on the work that was done for 10GBd per lane.
- Maintaining the defined skew variation for the existing 802.3bm CAUI-4 interfaces and similar 50G LAUI-2 I/F.
- Separates the analysis between Parallel PMDs and Serial PMDs.

Skew Variation Contributors

- SP0 / SP1 / SP2 / SP6 / SP7

- Skew variation contribution originates from PMA + AUI / PPI
- PMA logic (accounts for $\sim 75 \%$ of the skew variation at 10GBd)
- Results from logic / clock schemes - proportional to UI
- AUI / PPI
- Results from channel / temperature variations - not dependent on the signaling rate
- 802.3ba allowed 1 ns skew mismatch for PCB traces and ~ 50 ps for skew variation
- SP3 / SP5
- Skew variation contribution from the PMD - not dependent on the signaling rate
- SP4
- Skew variation contribution from the fiber / copper channel
- Results from laser temperature / wavelength variations - not dependent on the signaling rate
- Transition from 10.3GBd per lane to 26.5GBd/53GBd per lane PMDs
- SP0 Contribution - 0.2 ns/ 5 UI (Based on legacy PMA/CAUI-4)
- SP1/2/6/7 Contribution - 1.5UI + 50ps = $0.11 \mathrm{~ns} / \sim 3 \mathrm{UI}$ (@26.5625GBd)
- SP3/5 Contribution - Similar to $10 \mathrm{G}=0.2 \mathrm{~ns} / 5 \mathrm{UI}$
- SP4 Contribution - Similar to 10G value in ns / Based on the PMD/MEDUIM

Dynamic Skew and PMA gearbox (m != n)

- For designs with a PMA gearbox (m != n), the gearbox has a wander buffer per input lane
- Size is $2 x$ the max dynamic skew for that corresponding path (in bits)
- High speed FIFO in the optical module, which cost power and area.
- Start reading out of the wander buffers when they are half full

Example 100GAUI-4 4x26.5Gbs \Leftrightarrow 53GBd gearbox

All buffers half full

Some time later

\rightarrow Шᅦ| \rightarrow

Dynamic skew

100G 10:4 MLD and 100GBASE-DR 2:1 Muxing

- The skew variation buffer accounts for most of the 2:1 Mux area and power
- 100GBASE-DR modules are expected to fit in small / low power form factors
- The skew variation should be defined based on the interface requirements.
- Unnecessary requirement \rightarrow unnecessary power consumption, cost.

10:4 100G MLD

100GBASE-DR 2:1 MUX

Buffer size: $2 \times$ Skew
Variation x 2 (PAM4)

Skew Variation for 50G/100G Single Lane PMDs

Skew points	Maximum Skew Variation Contribution [ns]	Maximum Skew Variation (ns)	Maximum Skew Variation for 26.5625GBd PMD lane (UI)	Notes
SP0	0.20	0.20	5	Similar to CAUI-4
CL91/134 RS-FEC resets the skew variation				
SP1 (50GAUI-2)	0.11	0.11	3	$1.5 \mathrm{UI}+50 \mathrm{psec}$
SP2	0.00	0.11	3 (6@ 53GBd)	Single lane PMD
SP3	0.00	0.11	3 (6@ 53GBd)	Single lane PMD
SP4	0.00	0.11	3 (6@ 53GBd)	Single lane PMD
SP5	0.00	0.11	3 (6@ 53GBd)	Single lane PMD
$\begin{gathered} \text { SP6 } \\ \text { (50GAUI-2) } \end{gathered}$	0.11	0.22	6	$1.5 \mathrm{UI}+50 \mathrm{psec}$
CL91/134 RS-FEC resets the skew variation				
SP7	0.2	0.2	5	Similar to CAUI-4
At FEC transmit		0.31	8	SP0+PMA
At FEC receive		0.33	9	SP6+PMA
At PCS receive		0.4	10	SP7+ CAUI-4 PMA

Skew Variation for 100G PMDs with 26.5625GBd PMD lanes

Skew points	Maximum Skew Variation Contribution [ns]	Maximum Skew Variation (ns)	Maximum Skew Variation for 26.5625GBd PMD lane (UI)	Notes
SP0	0.20	0.20	5	CAUI-4
CL91/134 RS-FEC resets the skew variation				
$\begin{gathered} \text { SP1 } \\ (100 \text { GAUI-4) } \end{gathered}$	0.11	0.11	3	$1.5 \mathrm{UI}+50 \mathrm{psec}$
SP2	0.11	0.22	6	Single lane PMD
SP3	0.20	0.42	11	200psec
SP4	2.80	3.22	86	2.8 nsec - TBD
SP5	0.20	3.42	91	Single lane PMD
$\begin{gathered} \text { SP6 } \\ \text { (100GAUI-4) } \end{gathered}$	0.11	3.55	94	$1.5 \mathrm{UI}+50 \mathrm{psec}$
CL91/134 RS-FEC resets the skew variation				
SP7	0.20	0.20	5	CAUI-4
At FEC transmit		0.32	8	SP0+PMA
At FEC receive		3.66	97	SP6+PMA
At PCS receive		0.40	10	SP7+ CAUI-4 PMA

Thank You

Connect. Accelerate. Outperform.'

