Transmitter testing for MMF PMDs

IEEE P802.3cd, San Diego, July 2016

Jonathan Ingham
Foxconn Interconnect Technology

Introduction

- TDECQ has been introduced in P802.3bs as an extension of TDEC to PAM4
- It is reasonable to apply this approach to all MMF PMDs in P802.3cd
- However, it is important to address the question of an appropriate reference equalizer
- Here, initial modeling of a MMF link at 26.5625 GBd, relevant to all of the three MMF PMDs under standardization in P802.3cd, is considered
- In Part I, to introduce the modeling methodology, TDECQ is calculated for an example link. A comparison with penalty extracted from BER curves is performed as verification
- In Part II, TDECQ is calculated for a worst-case link for a range of equalizer lengths. Based upon the results, an appropriate reference equalizer is proposed

Part I: TDECQ and corresponding penalty for an example link

Simulated link

RIN PSD set by $4^{\text {th }}$-order Bessel-
Thomson LPF with -3 dBo
bandwidth of 18 GHz
ER of 4.8 dB assumed for RIN calculation

70 m OM3 MMF

Gaussian LPFs for modal and chromatic dispersion 2000 MHz km modal BW Chromatic dispersion calculated at 850 nm with 0.6 nm spectral width

BER calculated @ target BER of 2.4×10^{-4}
TDECQ calculated @ target SER of 4.8×10^{-4}

BER calculated using a common sampling point for all three PAM4 eyes

Thermal noise PSD set by Rx front-end LPF

Equalized eye diagram and TDECQ

Noise-free eye diagram

- Minimum TDECQ at a single sampling point: 1.2 dBo
- TDECQ in 0.04-Ul-wide windows at $0.5 \pm 0.05 \mathrm{UI}: 2.0 \mathrm{dBo}$

Reference case

- Reference case: 0 ps Tx rise time, $-\infty \mathrm{dB} / \mathrm{Hz}$ RIN, 0 m MMF
- Minimum TDECQ at a single sampling point: 0.1 dBo
- TDECQ in 0.04-UI-wide windows at $0.5 \pm 0.05 \mathrm{UI}: 0.1 \mathrm{dBo}$

BER curves

- At BER $=2.4 \times 10^{-4}\left(\log _{10}(\right.$ BER $\left.)=-3.6\right)$: simulated Tx sensitivity: -5.9 dBm
- At $B E R=2.4 \times 10^{-4}\left(\log _{10}(B E R)=-3.6\right)$: reference case sensitivity: -7.0 dBm
- Penalty of 1.1 dBo matches TDECQ difference of 1.1 dBo

Part II: TDECQ for a worst-case link

Approach

- The overall philosophy of the TDECQ methodology is "worst-case". For example:
(i) Rx is assumed to sample all three PAM4 eyes at a common time, although $R x$ do exist with greater capability
(ii) $R x$ is assumed to have "simple" thresholds at mean level and mean level $\pm 0 M A / 3$, although $R x$ do exist with greater capability
- To continue this philosophy and to maximize interoperability it is sensible to:
(i) Assume Tx does not have pre-emphasis, although $T x$ do exist with this capability
(ii) Assume Rx FFE has a T-spaced FFE only, although Rx do exist with fractionally-spaced FFE and/or DFE

Approach (cont.)

- Therefore, in this work we calculate TDECQ for worst-case Tx and MMF parameters with a T-spaced FFE as the reference equalizer
- The choice of a T-spaced FFE as the reference equalizer is implementation agnostic regarding the actual $R x$. It can be implemented by analog or digital means
- By calculating TDECQ for different lengths of T-spaced FFE, we can determine the shortest possible equalizer that is capable of yielding a compliant link (TDECQ $<4.0 \mathrm{dBo}$) with worst-case Tx and MMF parameters
- This shortest possible equalizer is recommended as the TDECQ reference equalizer

Simulated link with worst-case parameters

7-tap FFE: equalized eye diagram and TDECQ

Noise-free eye diagram

- TDECQ in 0.04-UI-wide windows at $0.5 \pm 0.05 \mathrm{UI}: 2.8 \mathrm{dBo}$

5-tap FFE: equalized eye diagram and TDECQ

Noise-free eye diagram

- TDECQ in 0.04-UI-wide windows at $0.5 \pm 0.05 \mathrm{UI}: 2.9 \mathrm{dBo}$

3-tap FFE: equalized eye diagram and TDECQ

Noise-free eye diagram

- TDECQ in 0.04-UI-wide windows at $0.5 \pm 0.05 \mathrm{UI}: 3.9 \mathrm{dBo}$

Summary of results

$$
\begin{array}{ll}
\text { 7-tap T-spaced FFE } & \text { TDECQ }=2.8 \mathrm{dBo} \\
\text { 5-tap T-spaced FFE } & \text { TDECQ }=2.9 \mathrm{dBo} \\
\text { 3-tap T-spaced FFE } & \text { TDECQ }=3.9 \mathrm{dBo}
\end{array}
$$

- These values do not include MPN. Separate calculations suggest a worst-case MPN penalty of 0.2 dBo
- Furthermore, there are additional impairments expected that are not captured in these simulations, e.g. electrical and optical reflections
- Since the TDECQ limit, i.e. maximum allocation for penalties, is 4.0 dBo , it is clear that a link with the worst-case Tx and MMF parameters is not compliant with a 3-tap T-spaced FFE
- The conclusion is that the reference equalizer for TDECQ for MMF PMDs must be at least a 5-tap Tspaced FFE, since it is the shortest possible equalizer for a link with TDECQ below 4.0 dBo

Conclusions

- Initial modeling of a worst-case MMF link at 26.5625 GBd, relevant to all of the MMF PMDs in P802.3cd, is presented
- TDECQ is calculated in accordance with the methodology from P802.3bs
- A T-spaced FFE is proposed as an implementation-agnostic reference equalizer
- The results show that the reference equalizer must be at least a 5-tap T-spaced FFE, since this is the shortest possible equalizer to allow the worst-case link to be compliant with the TDECQ limit of 4.0 dBo , allowing approximately 1 dBo allocation for other impairments
- The adoption of this reference equalizer does not constrain the implementation of an Rx to a Tspaced FFE. The necessary performance can also be achieved with a fractionally-spaced FFE

