
# Wideband Multimode Fiber (WBMMF) Standardization Update (a follow-up to kolesar 50GE NGOATH 01a 0116.pdf)

# IEEE 802.3cd July 2016, San Diego CA

Paul Kolesar – CommScope TIA WBMMF spec editor IEC WBMMF project co-leader

### WBMMF Standardization - TIA

- TR-42 published TIA-492AAAE in June 2016
  - 6 meetings, 13 teleconferences and 3 ballots over 20 months
  - Participation from IEC 86A members and transceiver makers



#### **WBMMF Standardization - IEC**

- IEC 86A initiated WBMMF project in April 2016
  - Backed by liaison request from ISO/IEC for 11801 ed. 3
  - First ballot of IEC 60793-2-10 ed. 6 closes August 19, 2016
  - Harmonized with TIA-492AAAE

|                                                                                                                   | 86A/1750A/CD<br>COMMITTEE DRAFT (CD)                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC/TC or SC:<br>SC86A                                                                                            | Project number<br>IEC 60793-2-10/Ed6                                                                                                                                                         |
| Title of TC/SC:<br>Fibres and Cables                                                                              | Date of circulation<br>(2016-06-24)         Closing date for comments           2016-07-08         2016-08-19                                                                                |
| Also of interest to the following committees                                                                      | Supersedes document<br>86A/1748/RR                                                                                                                                                           |
| Proposed horizontal standard Other TC/SCs are requested to indicate their interes Functions concerned: Safety EMC | st, if any, in this CD to the TC/SC secretary                                                                                                                                                |
| Secretary:<br>Guy Perrot – FR<br>Email: guy.perrot@nexans.com                                                     | THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT<br>TO CHANGE. IT SHOULD NOT BE USED FOR REFERENCE<br>PURPOSES.                                                                                |
| Email: gay.perfot@nexans.com                                                                                      | RECIPIENTS OF THIS DOCUMENT ARE INVITED TO<br>SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY<br>RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE<br>AND TO PROVIDE SUPPORTING DOCUMENTATION. |

Title:

IEC 60793-2-10/Ed6: Optical fibres – Part 2-10: Product specifications – Sectional specification for category A1 multimode fibres

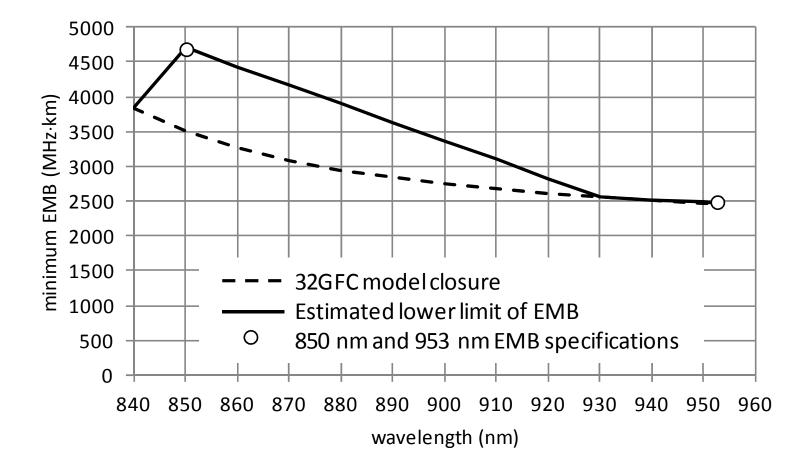
# WBMMF Cabling Standardization – ANSI/TIA & ISO/IEC

- ANSI/TIA-568.3-D
  - Emerging revision of optical fiber structured cabling standard (2016)
  - Approves cabling made with TIA-492AAAE fibers
- ISO/IEC 11801 ed. 3
  - Emerging revision of international structured cabling standard (2017)
  - Tentatively specifies cabling made with WBMMF
  - Dependent upon IEC fiber specification maturation

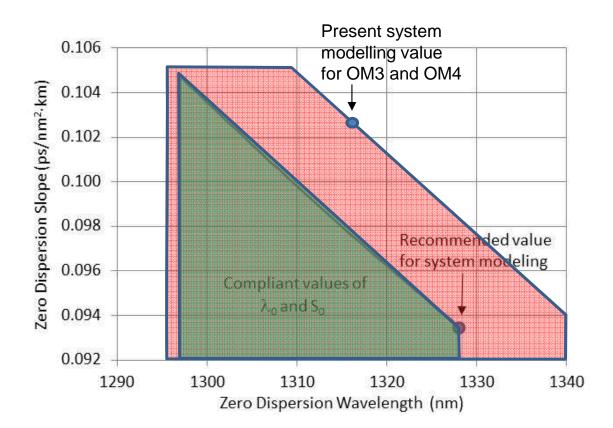
#### What is WBMMF?

- First MMF specified to support WDM
  - Laser-optimized modal bandwidth
  - Wavelengths from 840 nm to 953 nm
    - Sufficient to support at least 4 low-cost wavelengths
  - Supports all legacy applications
  - Supports emerging SWDM applications
- Performance compliant and superior to OM4
  - Details follow next

# Key Performance Spec Comparison


| Parameter                                                | OM4                        | WBMMF | Comment re WBMMF                                                    |
|----------------------------------------------------------|----------------------------|-------|---------------------------------------------------------------------|
| Effective modal bandwidth at 850 nm, min (MHz*km)        | 4700                       | 4700  | Drop-in substitute for OM4                                          |
| Effective modal bandwidth at<br>953 nm, min (MHz*km)     | Not<br>spec'd <sup>a</sup> | 2470  | Assures level total <sup>b</sup> bandwidth over wavelength spectrum |
| Chromatic dispersion at 840 nm,<br>max ( ps/nm*km )      | 108.4                      | 103   | Smaller dispersion boosts legacy application support                |
| Chromatic dispersion at 953 nm,<br>max ( ps/nm*km )      | 65                         | 61.7  | Smaller dispersion helps<br>SWDM application support                |
| Cabled attenuation at 953 nm<br>per 568.3-D, max (dB/km) | Not<br>spec'd <sup>a</sup> | 2.3   | Assured maximum                                                     |

<sup>a</sup> Can be characterized


<sup>b</sup> Modal and chromatic bandwidths combined

# Effective Modal Bandwidth Characteristics

• Informatively and conservatively specified over full wavelength range



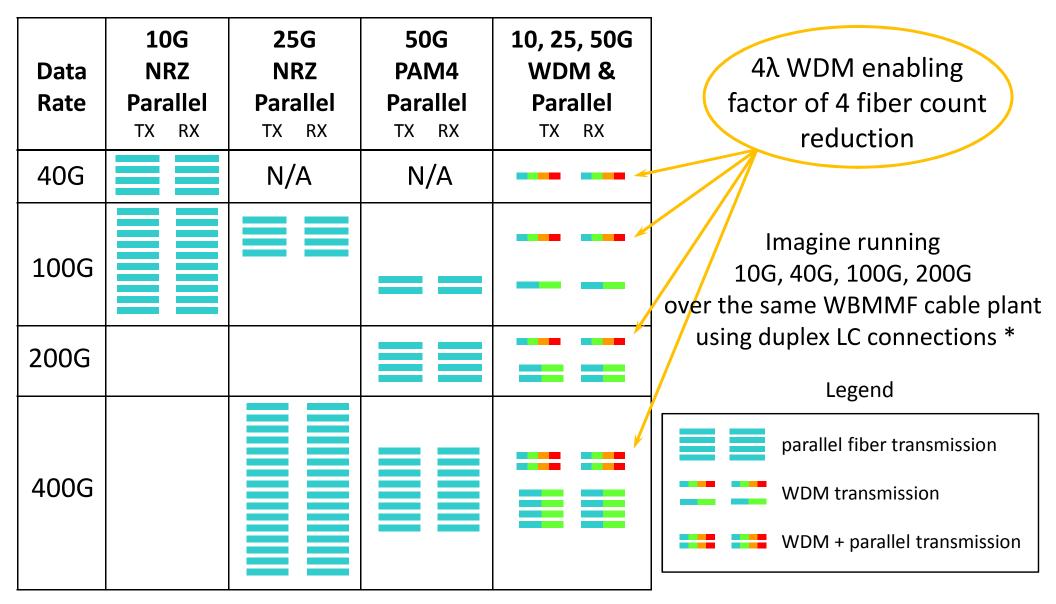
#### Improved Chromatic Dispersion Spec



Chromatic dispersion specification for wide band fiber tightened from the red region (OM3 & OM4) to the green region.

Increases chromatic bandwidth by 5%, reducing ISI, MPN and Pcross penalties.

The following values recommended for system modeling:


 $\lambda_0$  = 1328 nm

 $S_0 = 0.093477 \text{ ps/nm}^2 \cdot \text{km}$ 

(worst case for all relevant wavelengths)


Specification limits: ZDW  $(\lambda_0)$ : 1297  $\leq \lambda_0 \leq$  1328 nm ZDS  $(S_0)$ :  $S_0 \leq 4(-103)/(840(1-(\lambda_0/840)^4))$  ps/nm<sup>2</sup>km

# Application Evolution Map – Ethernet Examples



\*Parallel fibers remain essential to support break-out functionality

# Application Evolution Map – Ethernet Examples



\*Parallel fibers remain essential to support break-out functionality

## P802.3cd Project Considerations

- Experience proves market acceptance of parallel fiber solution
  - Enables higher density ports via break-out cabling
  - Reduces cost per single-lane channel
- Experience proves market acceptance of 2-fiber solution
  - Provides cabling simplicity and continuation of legacy approach
  - WDM enables continuation of 2-fiber solution
  - WBMMF enhances SWDM capability
- Both have broad market potential and distinct identity
  - The break-out approach will be the first deployed (witness 4×10G)
  - The WDM approach will follow as full data rates are required
- WBMMF should be referenced for all MM solutions
  - Independent of adopting a SWDM PHY
  - Owing to compliance with OM4 specifications

#### Summary

- The industry is moving to utilize SWDM
  - Fibers, cabling, transceivers, switches, servers
  - See proposal in ingham\_3cd\_01\_0716.pdf
- WBMMF is standardized to optimize SWDM solutions
  - While retaining support for 850 nm legacy applications
- SWDM & WB technologies extend the utility of MMF
  - Continuing legacy of delivering lowest-cost optical solutions over enterprise' primary transmission medium
- Ethernet applications can benefit from these technologies
  - to regain or retain two-fiber paradigm for generations

# Thank You