50GbE and NG 100GbE Logic Baseline Proposal

> Gary Nicholl - Cisco Mark Gustlin - Xilinx David Ofelt - Juniper

IEEE 802.3cd Task Force, July 25-28 2016, San Diego

Supporters

- Jonathan King Finisar
- Chris Cole Finisar
- Tom Palkert Molex
- Bharat Tailor Semtech
- Hanan Leizerovich Multiphy
- Kent Lusted Intel
- Pirooz Tooyserkani Cisco
- Cedrik Begin Cisco
- Mike Li Intel
- David Lewis Lumentum
- Kohichi Tamura Oclaro
- Ryan Latchman Macom
- Rob Stone Broadcom
- Eric Baden Broadcom
- Matt Brown APM

- Paul Brooks Viavi Solutions
- David Estes Spirent
- Jerry Pepper Ixia
- Thananya Baldwin Ixia
- Peter Anslow Ciena
- Adee Ran Intel
- Arthur Marris Cadence
- Faisal Dada- Xilinx
- Scott Irwin Mosys
- Don Cober Comira
- Jeff Twombly Credo
- Phil Sun Credo
- Tom Issenhuth Microsoft
- Brad Booth Microsoft
- Ali Ghiasi Ghiasi Quantum LLC

Background

- At the 802.3cd meeting in Whistler it was agreed to adopt nicholl_3cd_01a_0516 as the basis for the 50GbE and 100GbE PCS and FEC architecture, with the exception of leaving the FEC lane count / distribution as TBD.
- http://www.ieee802.org/3/cd/public/May16/nicholl_3cd_01a_0516.pdf

Motion #4: 1:42 p.m.

Move to adopt nicholl_3cd_01a_0516 as the basis for the 50GbE and 100GbE PCS and FEC architecture, with the exception of leaving the FEC lane count / distribution as TBD

- M: Gary Nicholl
- S: Dave Ofelt
- Technical (>=75%),
- Y: 67 N: 1 A: 12
- Results: passes 1:52 p.m.

Introduction

- This presentation builds upon nicholl_3cd_01a_0516 and provides baseline proposals for the 50GbE and NG 100GbE logic layers
- The primary change for this presentation is related to the FEC lane count:
 - 50GbE: 2x26G FEC lanes; 100GbE 4x26G FEC lanes
 - A bit muxing PMA maps FEC lanes to 53Gb/s PAM4 lanes
 - This change was made to enable a broader range of implementation choices
- Additional changes include:
 - Update to AM to FEC lane mapping to reflect the adoption of 26G FEC lanes
 - PAM4 precoding added to mitigate impact of burst errors (on links with dominant first DFE tap).
 Optional to enable
 - RS/MII baseline proposal
 - PMA baseline proposal

Architecture Overview

- Based on 802.3ba system architecture
- Separate PCS and FEC sub layers
- PCS and FEC can be separated by an optional AUI (not shown)
- FEC is mandatory for all 802.3cd PHY types
- FEC can be carried over a 25Gb/s or 50Gb/s per lane optional AUI (not shown)
- PMA is based on blind bit muxing

* FEC mandatory for all 802.3cd PHY types

RS/MII Baseline

- RS adapts the bit serial protocols of the MAC to the parallel format of the PCS
- MII provides an optional logical interfaces between the MAC/RS sublayers and the Physical Layer (PHY).
 - not physically instantiated
 - defines a common logical interface for all PHY types
 - often used for connecting RTL blocks within ASICs/FPGAs
- 100G RS and MII are already defined in Clause 81
- 50G RS and MII to be based on Clause 81

NG 100GbE PCS & FEC Overview

- PCS
 - Re-use existing 100GbE (Clause 82) PCS
 - No changes proposed
- FEC
 - Based on 802.3bj RS(544,514) FEC (Clause 91)
 - Need to modify AM mapping to enable bit muxing
- 100GAUI-n name is a placeholder
 - CAUI-4: 25.78125G per lane (Annex 83 D/E)
 - 100GAUI-4: 26.5625G per lane (based on Annex 120 B/C)
 - 100GAUI-2: 53.125G per lane (based on Annex 120 D/E)

Note 1: n = 2 or 4 lanes

NG 100GbE - Alignment Marker mapping to FEC lanes

- Based on Clause 91. Exact AM mapping still TBD
- Initial analysis indicates that Clause 91 AM mapping needs to be modified to avoid clock content issues with repeating AM0 and AM16 patterns when bit muxing FEC lanes.

50GbE PCS & FEC Overview

- PCS
 - Based on overclocked 40GbE PCS (Clause 82)
 - 4 x PCS lanes running at 12.890625 Gb/s
 - AM spacing changed from 16k to 20k* to better support FEC sublayer
- FEC
 - Based on 802.3bj RS(544,514) FEC (Clause 91)
 - FEC symbols distributed to 2 x 26G FEC lanes
 - Modified AM mapping format (4 PCS lanes, 2 FEC lanes, 10b alignment and to enable bit muxing)
- AUI names are placeholders
 - 50GAUI-2a: 25.78125G per lane (based on Annex 83 D/E)
 - 50GAUI-2b: 26.5625G per lane (based on Annex 120 B/C)
 - 50GAUI-1b: 53.125G per lane (based on Annex 120 D/E)

MAC/RS

50GBASE-RPCS

RS FEC

Note 1: n = 1 or 2 lanes

MAC/RS

50GBASE-RPCS

PMA

* 20k spacing is consistent with other 50G FEC implementations.

50GbE PCS Data Flow

- Identical data flow to 40GbE PCS in Clause 82
- 4 x PCS lanes running at 12.890625 Gb/s (overclocked rate)
- 4 x 66-bit alignment markers (AM), one per PCS lane, inserted periodically
- AM spacing (start of one AM to the start of next AM) modified to 2048066-bit blocks, to better align with FEC codeword boundaries

50GbE PCS AM Details

50GBASE-R Alignment marker format

50GbE PCS AM Details

PCS Lane Number	Encoding {M0,M1,M2,BIP3,M4,M5,M6,BIP7}
0	0x90, 0x76, 0x47, BIP3, 0x6F, 0x89, 0xB8, BIP7
1	0xF0, 0xC4, 0xE6, BIP3, 0x0F, 0x3B, 0x19, BIP7
2	0xC5, 0x65, 0x9B, BIP3, 0x3A, 0x9A, 0x64, BIP7
3	0xA2, 0x79, 0x3D, BIP3, 0x5D, 0x86, 0xC2, BIP7

Note: Each octet is transmitted LSB to MSB

50GBASE-R Alignment marker encodings (identical to 40GBASE-R encodings)

50GbE Tx FEC Data Flow

- Data flow is based on 802.3bj Clause 91
- FEC encoder is RS(544,514) running in a 1x50G configuration
- FEC encoder output is distributed to 2 FEC lanes on a symbol by symbol basis
- A single 257-bit alignment marker (AM) is inserted into the first 257 message bits to be transmitted from every 1024th FEC codeword

50GbE Rx FEC Data Flow

• Reverse of Tx

50GbE - Alignment Marker mapping to FEC lane

- Based on Clause 91 mapping, but modified to support 4 PCS lanes, 2 FEC lanes, 10b alignment and to enable bit muxing of FEC lanes
- Exact AM mapping still TBD
- Initial proposal for the format of amp_tx_2/3
 - $amp_tx_2: am2_m0/am2_m1/am2_m2/am2_bip3/am2_m4/am2_m5/am2_m6/am2_bip7/am3_bip7[0:1]$
 - amp_tx_3: am3_m0/am3_m1/am3_m2/am3_bip3/am3_m4/am3_m5/am3_m6/am3_bip7[2:7]

Why 10-bit Alignment is Good on the AMs

- The two figures show the options for how to map AMs into the FEC lanes
- 10-bit alignment simplifies the operation and description

Non 10-bit aligned

10-bit aligned

FEC	Reed-Solomon symbol index, k (10-bit symbols)		Reed-Solomon symbol index, k (10-bit symbols)		
Lane	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Lane	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		
Lane 0	amp_tx_0amp_tx_2	Lane 0	amp_tx_0amp_tx_2 ₆₅		
Lane 1	amp_tx_1amp_tx_3	Lane 1	o amp_tx_1 63 amp_tx_3 61		

Start of Codeword Data Format

248b of AM	1b pad	1 b Data	8b AM	Data
------------	-----------	-------------	-------	------

Start of Codeword Data Format

PMA Baseline

- Identical PMA functions as described in Clause 120
 - Support for bit muxing
 - Support for Gray coding and PAM4 coding on 50G interfaces
 - Mapping between logical and physical lanes is not defined nor constrained
- PAM4 Precoding
 - Mandatory to implement for Tx on PMAs driving backplane, copper and C2C.
 - Optional to enable (on links with dominant first DFE tap)
 - Precoding is implemented after Gray coding
- With no FEC the per lane signaling rate is 25.78125Gb/s
 - 2x25.78125Gb/s NRZ for 50GbE or 4x25.78125Gb/s NRZ for 100GbE (defined in Clause 83)
- With RS 544 FEC the per lane signaling rate is 26.5625Gb/s or 53.125 Gb/s
 - 2x26.5625Gb/s NRZ for 50GbE or 4x26.5625Gb/s NRZ for 100GbE
 - 1x53.125 Gb/s PAM4 for 50GbE or 2x53.125 Gb/s PAM4 for 100GbE

• The EEE baseline proposal is being addressed in a separate presentation

Open Issues

- Naming of the AUI interfaces
 - In particular to differentiate between different speeds for the same number of lanes
- Should precoding support be mandatory on Rx?
 - With optional use
- Exact patterns for AMs
 - How much data is repeated
 - Do we keep the same 40GbE AMs for 50GbE?

Conclusion

- This presentation provides 50GbE and NG 100GbE baseline proposals for:
 - RS/MII
 - PCS
 - FEC
 - PMA

Thanks !!

Backup: Use cases

• The following slides provide examples of use cases that can be supported with the proposed 50GbE and NG 100GbE architecture.

NG 100GbE Use Cases (New Port ASIC)

USE CASE #1

USE CASE #2

USE CASE #3

USE CASE #4

NG 100GbE Use Cases (Legacy Port ASIC)

USE CASE #5

USE CASE #6

USE CASE #7

1 = 25.78125Gb/s, 2 = 26.5625Gb/s, 3 = 53.125Gb/s

50GbE Use Cases (New Port ASIC)

USE CASE #1

USE CASE #2

USE CASE #3

USE CASE #4

50GbE Use Cases ("Legacy" Port ASIC - PCS only)

USE CASE #5

USE CASE #6

USE CASE #7

1 = 25.78125Gb/s, 2 = 26.5625Gb/s, 3 = 53.125Gb/s

Backup: PMA Examples

50GbE PMA Examples:

PMA (2:2): 2x25G NRZ retimer (for connecting the PCS with the FEC sublayer)
PMA (2:2): 2x26G NRZ retimer (for connecting RS 544 FEC sublayer to a PMA 2:1)
PMA (2:1): 2x26G NRZ to 1x53G PAM4 (to connect RS 544 FEC sublayer to a PMA 1:1 or PMD)
PMA (1:1): 1x53G PAM4 retimer (to go between a PMA 1:1 and a PMD)

100GbE PMA Examples:

PMA (4:4): 4x25G NRZ retimer (for connecting the PCS with the FEC sublayer)
PMA (4:4): 4x26G NRZ retimer (for connecting RS 544 FEC to a PMA 4:2 sublayer)
PMA (4:2): 4x26G NRZ to 2x53G PAM4 (to connect RS 544 FEC sublayer to a PMA 2:2 or a PMD)
PMA (2:2): 2x53G PAM4 retimer (to go between a PMA 2:2 and a PMA 2:2 or a PMD)