

Jeff Slavick

06 July 2016

Supporters

Oded Wertheim

802.3cd Objectives

Support optional Energy-Efficient Ethernet operation

Clause 78 – Energy Efficient Ethernet

- Provides mechanism to allow links to enter a lower power state to conserve energy. Traffic transmission is halted during this time.
- Two types of operation
 - Fast Wake
 - EEE mode for all PHYs that have EEE defined (except 10G-KR/CR)
 - Doesn't stop data transmission
 - Wake time is roughly 340ns
 - Deep Sleep
 - EEE mode for Copper PHYs only
 - Stops data transmission for periods of time
 - Wake time is roughly 5500ns

Baseline Proposal

- Only add Fast-Wake EEE support for all 802.3cd PHY types
 - Set wake time to be the same as 40/100G

Why no Deep Sleep?

- Deployment usage
 - How many systems use the feature?
 - If it's a feature no-one uses why spend time/effort defining it?
- Wake time requirements
 - What is the system wake time requirement to be used?
 - What is the PHY wake time requirement for "significant" power savings?
 - Do the system and PHY wake times align such that power-savings is "substantial"? (ie. 2us wake provides 1% savings, while 200us 50%)
- Deep sleep circuitry support
 - Rapid Alignment Marker logic costs area and power. Which does diminish the PMA/PMD power savings. Is it still net positive?
 - Complicates the standard quite a bit (FW only require LPI encode/ decode)

Conclusion

- Add Fast-wake at this time
 - Easy to define and implement and provides a tool for savings to be made.
- Do NOT add Deep sleep at this time
 - Adds a lot of work for unknown usage
 - PHYs maybe lower-power by not supporting the sleep functions (no need for fast-power-on circuitry)

