Transmitter Specifications for Cl137

Alexander Rysin and Piers Dawe Mellanox

Supporters

Mike Dudek

Cavium

Zvi Rechtman

Mellanox

Introduction

- Performance of COM TX, simulated at TP0a, is compared with the current CL137 limits
- Similar analysis for CR hosts was presented in <u>dudek_3cd_01_0118.pdf</u>
- ERL is suggested to replace the SNR_{ISI} specification. With that, currently this is informative and alignment of the TX specifications to COM is required.
- Related to comment 28

Methodology

- TX output waveform was generated with Av=0.4V and risetime of 12 ps (used in COM). COM channel up to TP0a (COM package and a compliant KR test fixture) was added to generate the waveforms at this test point.
- The waveforms were analyzed and results compared with Clause 137 TX specifications.

Simulation Setup

Results

	Simulated PRBS13Q @ TP0a		D3.1 Cl137 Limit	Comments
Rd [Ω]	50		NA	
Zc_pkg [Ω]	95		NA	
R_{LM}	0.998	0.948	0.95	
EB+EC	0	0.1	NA	
Pmax [V]	0.3501	0.3483	0.3	0.75 x Vf _{min}
Sigma_e [V]	1.32e-3	3.7e-3	NA	
SNR _{ISI} [dB]	30.93	30.92	43	
SNDR [dB] (@Sigma_n = 0)	48.44	39.48	32.5	
Sigma_n [V] (TX_SNR=32.5 dB)	8.3e-3	8.26e-3	NA	$TX_SNR = 20\log\frac{Pmax}{\sigma_n}$
SNDR [dB] (TX_SNR=32.5 dB)	32.39	31.71	32.5	$SNDR = 10log \frac{{P_{max}}^2}{\sqrt{{\sigma_e}^2 + {\sigma_n}^2}}$

PAM4 Levels: L0=-1; L1=(-1+EB)/3; L2=(1+EC/3); L3=1

Linear Fitting: Dp=3;Nb=12;Np=200;Nv=13

Conclusions and Proposed Changes

- COM reference transmitter would not meet the current spec limits of SNR_{ISI}.
 Therefore, the spec limits are more stringent then they need to be.
- The presented results are simulated. Measured values are expected to be worse, due to measurement impairments and limitations.
- Proposed TX specifications:
 - $SNR_{ISI} = 30.5 dB$
 - SNDR = 32 dB