

PAM4 transmitter training protocol

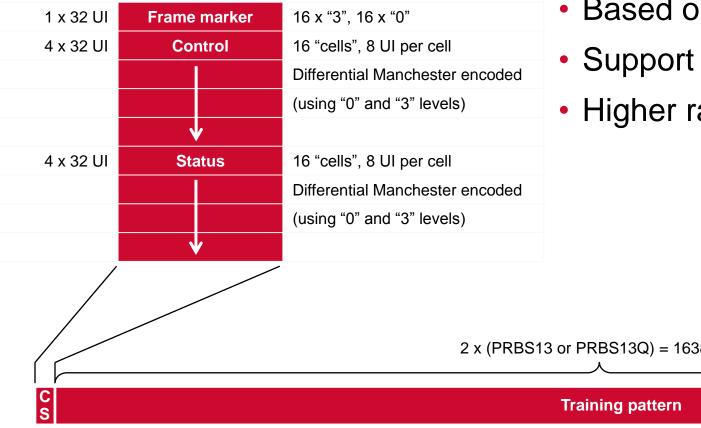
Adam Healey and Jeff Slavick IEEE P802.3cd Task Force, May 2016

Contributors

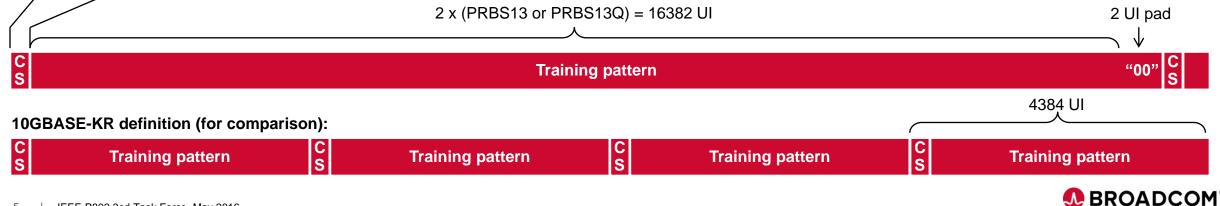
- Magesh Valliappan, Broadcom
- Vasu Parthasarathy, Broadcom

Introduction

- 10GBASE-KR (Clause 72) defines a start-up protocol that enables a receiver to control the equalizer of the remote transmitter
- This start-up protocol has been leveraged by subsequent PHYs operating over electrical backplanes to direct attach copper cable assemblies
- This is a useful feature that should be carried forward to PHYs based on 50 Gb/s per lane operating over backplane and copper cables
- This presentation proposes modifications to the protocol to make it more suitable for these next-generation applications


Assumptions and provisions

- PAM4 for 50 Gb/s per lane over backplanes and copper cables
- The transmitter equalizer will include additional taps
- Include a mechanism to select optional precoding (should it be added)



Transmitter training signal

Control and status (CS) fields

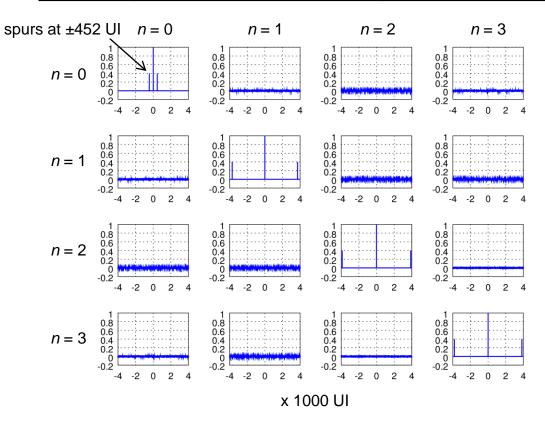
- Based on IEEE Std 802.3-2015, 72.10
- Support for PAM4 training pattern
- Higher ratio of training pattern to control/status

Control and status fields

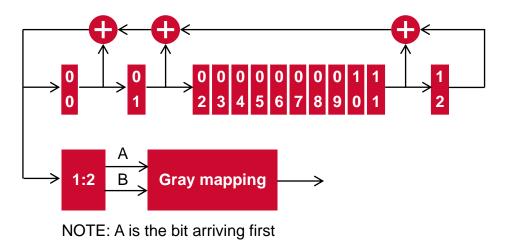
Control register encoding

Cell	Name	Description
15:14	Reserved	Transmit as 0, ignore on receipt
13:12	Initial condition request	$\frac{13 \ 12}{1 \ 1} = \text{Preset 3 (TBD)}$ $1 \ 0 = \text{Preset 2 (TBD)}$ $0 \ 1 = \text{Preset 1 (no equalization)}$ $0 \ 0 = \text{Individual coefficient control}$
11:10	Reserved	Transmit as 0, ignore on receipt
9	Modulation request*	1 = Request PAM4 0 = Request PAM2/NRZ
8	Precoding request*	1 = Request precoding on 0 = Request precoding off
7:5	Reserved	Transmit as 0, ignore on receipt
4:2	Coefficient select	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1:0	Coefficient request	$\begin{array}{ccc} \underline{1 & 0} \\ 1 & 1 & = \text{No equalization (0)} \\ 1 & 0 & = \text{Decrement} \\ 0 & 1 & = \text{Increment} \\ 0 & 0 & = \text{Hold} \end{array}$

* Modulation and precoding apply to the training pattern only.


Status register encoding

Cell	Name	Description
15	Receiver ready	 1 = Training is complete and the receiver is ready for data 0 = Request for training to continue
14:12	Reserved	Transmit as 0, ignore on receipt
11	Modulation status*	1 = PAM4 0 = PAM2/NRZ (default)
10	Precoding status*	1 = Precoding on 0 = Precoding off
9	Receiver frame lock	1 = Frame boundaries identified0 = Frame boundaries not identified
8	Initial condition status	1 = Updated 0 = Not updated
7:5	Reserved	Transmit as 0, ignore on receipt
4:2	Coefficient select echo	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1:0	Coefficient status	$\begin{array}{ccc} \underline{1 & 0} \\ 1 & 1 & = \text{Coefficient not supported} \\ 1 & 0 & = \text{Coefficient at limit} \\ 0 & 1 & = \text{Updated} \\ 0 & 0 & = \text{Not updated} \end{array}$



Training pattern

n	Polynomial_ <i>n</i> , <i>G</i> (<i>x</i>)	Notes
0	$1 + x + x^2 + x^{12} + x^{13}$	PRBS13Q polynomial
1	$1 + x^2 + x^3 + x^7 + x^{13}$	
2	$1 + x^2 + x^4 + x^8 + x^{13}$	
3	$1 + x^2 + x^5 + x^9 + x^{13}$	

Generator example (*n* = 0)

- Based on IEEE Std 802.3-2015, 92.7.12
- Configurable generator polynomial and seed to avoid correlated interference between lanes
- When modulation status is PAM2, map A (or B) bits to "0" and "3" levels
 - A and B are shifted copies of the PRBS13 sequence
- Gray-mapped PAM4 symbols may optionally be precoded

Principles of operation

- Define only the response to defined requests
- Use of defined requests is beyond the scope of the standard
- Frame lock diagram similar to Figure 72-4 accounting for different frame marker intervals
- Training state diagram similar to Figure 72-5
- New coefficient update state diagram to account for initial condition control and individual coefficient processing

Coefficient update state diagram

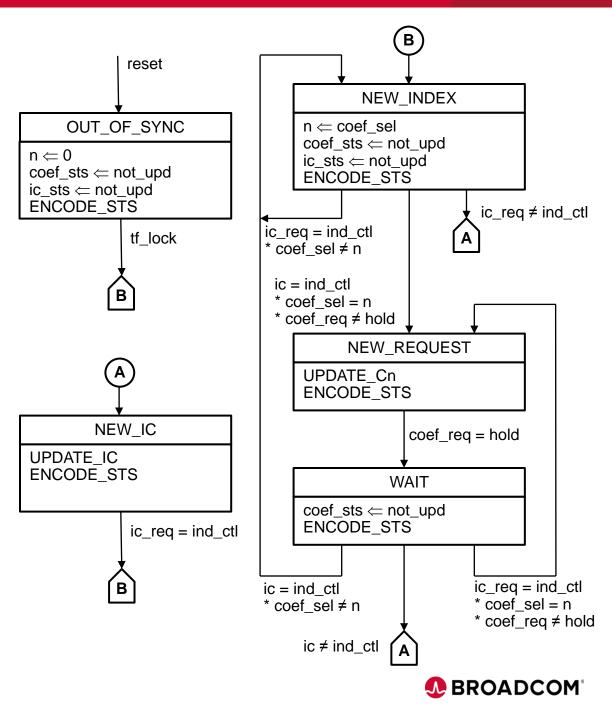
coef_req: Enumerated variable derived from the coefficient request bits from control field of the received training frames. This variable may be one of the following values: hold, decrement, increment, no equalization.

coef_sel: Variable derived from the coefficient select bits from the control field of the received training frames. It is assigned a signed integer value that is the 2's complement interpretation of the bits.

coef_sts: Enumerated variable that may be assigned one of the following values: not updated (not_upd), updated, coefficient at limit, coefficient not supported.

ic_req: Enumerated variable derived from the "initial condition request" bits from the control field of the received training frames. This variable may be one of the following values: individual control (ind_ctl), preset 1, preset 2, preset 3.

ic_sts: Enumerated variable that may be assigned one of the following values: not updated (not_upd), updated.


n: Variable that stores the most recent value of coef_sel.

tf_lock: Boolean variable that is true when the training frame marker positions have been identified and is false otherwise.

ENCODE_STS: Function that encodes portions of the status field of transmitted training frames. The variable tf_lock is mapped to the receiver frame lock bit, n is mapped to the coefficient select echo bits, coef_sts is mapped to the coefficient status bits, and ic_sts is mapped to the initial condition status bit.

UPDATE_Cn: Function that updates the value of c(n) based on the current values of n and coef_req. The result of the update is stored in the variable coef_sts.

UPDATE_IC: Function that updates all equalizer coefficients based on the current value of ic_req. The result of the update is stored in the variable ic_sts.

Coefficient update state diagram, continued

UPDATE_Cn algorithm:

if n in n_list

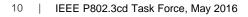
```
if coef_req = increment
    c(n) = c(n) + cn_stp
else if coef_req = decrement
    c(n) = c(n) - cn_stp
else if coef_req = no equalization
    c(n) = 0
else
    c(n) = c(n)
if c(n) > cn_max
    c(n) = cn_max
    coef_sts = coefficient at limit
else if cn < cn_min
    c(n) = cn_min
```

```
coef_sts = coefficient at limit else
```

```
coef_sts = updated
```

```
else
```

coef_sts = coefficient not supported


UPDATE_IC algorithm:

```
if ic_req = preset 1
    <set coefficients to preset 1>
    else if ic_req = preset 2
        <set coefficients to preset 2>
    else if ic_req = preset 3
        <set coefficients to preset 3>
     else
        <no action>
```

```
ic_sts = updated
```

n_list: Set of valid coefficient indices
c(n): The current value of the coefficient n
cn_stp: Step size for coefficient c(n)
cn_min: Minimum value for coefficient c(n)
cn_max: Maximum value for coefficient c(n)

• Functions are called once upon entry into a state sequentially in the order listed

Additional principles of operation

- The default modulation for the training pattern is PAM2/NRZ
- Precoding is off by default
- Precoding mode is independent of the mode chosen for the opposite direction of the link
- Receiver may request changes to modulation (or precoding) at any point during the training process
- Modulation (and precoding) apply to the training pattern only; encoding of frame marker, control field, status field, and "00" pad are unchanged
- The precoding mode at the end of transmitter training is used for "mission" data
- When the "Receiver frame lock" flag is 1, the receiver shall respond to requests within TBD ms (2 ms in 92.7.12)

Management provisions

- Local device (LD) and link partner (LP) control and status registers (per lane)
- PMD training pattern register: polynomial identifier, seed (per lane)
- Enable and restart training control bits (per lane)
- Frame lock, start-up protocol status, training failure status bits (per lane)

Summary and conclusions

- The Clause 72 start-up protocol is a useful feature that should be carried forward to PHYs based on 50 Gb/s per lane operating over backplane and copper cables
- This presentation proposes modifications to the protocol to make it more suitable for these next-generation applications
 - Support for PAM4 training patterns
 - Higher ratio of training pattern to control/status
 - Support for additional transmitter equalizer taps
 - Enable selection of optional precoding

