

Multi-Port Implementations of 50/100/200GbE

Scott Kipp 5/22/16 kipp_3cd_01a_0516.pdf

Supporters

- Doug Coleman, Corning
- Steve Swanson, Corning
- Chris Cole, Finisar
- Jonathan King, Finisar

The 2016 Ethernet Roadmap

• Source:

www.ethernetalliance.org /roadmap

B

ETHERNET INTERFACES AND NOMENCLATURE

•	17 (or 18)
	New
	Ethernet
	Interfaces
	Shown in
	Green

- At least 14 in the 802.3cd project
- Another 6 in 802.3bs

	Electrical Interface	Backplane	Twinax Cable	Twisted Pairs	MMF	Parallel SMF	2km SMF	10km SMF	40km SMF
10BASE-				т					
100BASE-				тх	FX			LX	
1000BASE-		кх	сх	т	SX			LX	
2.5GBASE-		кх		т					
5GBASE-		KR		т					
10GBASE-	SFI, XFI	KX4, KR	CR	т	SR			LR	ER
25GBASE-	25GAUI	KR	CR	т	SR			LR	ER
40GBASE-	XLAUI	KR4	CR4	т	SR4		FR	LR4	ER4
50GBASE-	50GAUI (-2?)	KR	CR		SR		FR	LR	
100GBASE-	CAUI10	KR4, KR2	CR10,		SR10	PSM4	10X10	LR4	ER4
	CAUI4	KP4	CR4,		SR4		CWDM4	10X10	10X10
	CAUI-2		CR2		SR2		CLR4		
200GBASE-	200GAUI-4	KR4	SR4		SR4	DR4	FR4	LR4	
400GBASE-	CDAUI-16				SR16	DR4	FR8	LR8	
	CDAUI-8								

Gray Text = IEEE Standard Red Text = In Standa

Red Text = In Standardization Green Text = Under consideration in IEEE

Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces

SOURCE: WWW.ETHERNETALLIANCE.ORG/ROADMAP

200G and 400G Form Factors Explosion

Ethernet Fragmentation at 50/100/200GbE

Form Factor	CR	SR	DR	FR	LR
SFP56	50	50	50	50	50
QSFP56 and uQSFP	4 X 50 2 X 100 1 X 200	4 X 50 2 X 100 1 X 200	4 X 50 2 X 100 1 X 200	<mark>2 X 100</mark> 1 X 200	<mark>2 X 100</mark> 1 X 200
QSFP-DD and OBO-8	8 X 50 4 X 100 2 X 200	8 X 50 4 X 100 2 X 200	8 X 50 4 X 100 2 X 200	2 X 200	2 X 200

Blue Text = No current IEEE objective

50/100/200GbE Potential

Demonstrated at Ethernet Alliance booth at OFC

• 200G Port and OBO should support:

Electrical Interfaces: 50GAUI 100GAUI-2 200GAUI-4 Modules: QSFP microQSFP QSFP-DD OBO Network Interfaces: 50GBASE-CR/SR/DR/LR 100GBASE-CR2/SR2/DR2/LR2 200GBASE-CR4/SR4/DR4 200GBASE-FR4/LR4

Blue Text = No current IEEE objective

Switch/Router Configurations

- Each switch vendor needs to select between module form factors and switch configurations
- This shows 1U switches while module switches and routers have more flexibility
- QSFP-DD same as QSFP

GRAPHICS AVAILABLE AT WWW.ETHERNETALLIANCE.ORG/ROADMAP

Possible Next Generation Switches

256 Port 50G Switch ASIC 128 Port 50G Switch ASIC 6.4Tb/s ASIC 32 200G QSFP56 Port Switch 32 400G QSFP-DD Port Switch

Optical Breakout

2X50GbE SFP56 Server

1X4

Copper Breakout

12.8Tb/s ASIC

□ 2X50GbE SFP56 Server

Multi-Port Copper Breakout

25GbE Consortium already has a 50GbE (2X25G) Interface Defined

• Breakout to single Lanes

QSFPxx capable of running at 4X 10GbE, 25GbE or 50GbE – xx = +, 28 or 56

To 10GbE, 25GbE or 50GbE SFP Ports

• Breakout to Dual Lanes

QSFPxx capable of running at 2X50GbE, or 100GbE

- xx = +, 28 or 56

Multi-port Optics to 10/25/50GbE

Figure 20 — QSFP Optical Receptacle and Channel Orientation

Fiber Number: 12 11 10 9 4 3 2 1 Transmit Channels: 1 2 3 4 Receive Channels: 4 3 2 1

QSFP56 running at 10, 25 and 50GbE per lane

25GbE Server

50GbE Server

10GbE Server

50GbE Switch

Multi-Ports to 50GbE and 100GbE Optical Breakout

Figure 20 — QSFP Optical Receptacle and Channel Orientation

One Port of 200GbE or 100GbE **Optical Breakout**

Figure 20 — QSFP Optical Receptacle and Channel Orientation 200GbE Module (4X50G) (a) conconconce (a) Fiber Number: 12 11 10 9 4 3 2 1 Transmit Channels: 1 2 3 4 Possibly Receive Channels: 4321 100GbF Module (4X25G) at reduced speed

QSFP56 running at 1X100GbE or 1X200GbE

Parallel Port and Module Highly Flexible

One Module – 3 Cabling Configurations

- Industry can reach high volume by using 1 module with different cabling
 - Applies to parallel solutions like CR, SR and DR
- Higher volume equals lower cost

Could even do this: 4. 1X100GbE and 2X50GbE

Cabling and Fiber Lanes Summary

3 Configurations

• Duplex LC – 2 fibers

QUADPLEX AND OCTALPLEX ARE NAMES I MADE UP

• New Quadplex MPO – 4 fibers

- O = Dark or Removed fibers

100GBASE-SWDM2 and LR2 Limitations

100GBASE-SWDM2 or CWDM2 has two wavelengths over one fiber

- μQSFP, QSFP56 and QSFP-DD can't support two Dual LC connectors without compromising density, so it will probably use MPO
 - Solution may be forthcoming
- MPO would be in Quadplex configuration and would only connect to similar modules – No SFPs

• Quadplex MPO - 4 fibers

100GBASE-SWDM2 and LR2 Limitations

100GBASE-SWDM2 has two wavelengths over one MMF

- If the task force develops 100GBASE-SWDM2 instead of 100GBASE-SR2, then the solution will have less configurability – It can only be SWDM2
- A server with a QSFP56 that only uses two lanes is suboptimal (only uses 2 or 4 lanes) or a new depopulated module
- New breakout cables will be needed with 2 dual LCs or fiber will be wasted
- SWDM2 is only supported in a multi-port module like QSFP56 (2X100GbE) or QSFP-DD (4X100GbE) – No SFP56

17

100GBASE-SWDM2 vs 100GBASE-SR2

	Pros	Cons
100GBASE-SWDM2	Requires half the fiber	Requires new module types in fractured market Less Configurable Requires mux and demux – higher power lasers
100GBASE-SR2	Highly configurable Higher volumes and lower cost	Requires double the fiber

18

Conclusion – Configurability Key to Success

Multi-Port Switch Implementations will be widely deployed

- With ASIC port counts rising, switch designs are changing
- CR/SR/DR multi-lane modules can support multiple configurations of 50/100/200G by changing the cabling
- Module configurability leads to higher volume and thus lower cost
- WDM Ports can't be broken out

- New Quadplex (4-fiber instead of 8 or 12) cabling infrastructure is needed for either MMF solution
- Multi-Port implementations do need different cabling and this could affect the MDI
 - MPO has different characteristics than LC connectors

Thank you!