50GbE and NG 100GbE PCS and FEC Baseline Proposals

Gary Nicholl - Cisco
Mark Gustlin - Xilinx
David Ofelt - Juniper

IEEE 802.3cd Task Force, May 23-25, Whistler - Canada

Supporters

- Brad Booth, Microsoft
- Tom Issenhuth, Microsoft
- Matt Brown, APM
- Mike Dudek, Qlogic
- Yaniv Sabag, Intel
- Jonathan King, Finisar
- Jeff Maki, Juniper
- Cedrik Begin, Cisco
- Kent Lusted, Intel
- Oded Wertheim, Mellanox
- Paul Brooks, Viavi Solutions

Table of Contents

- Introduction
- References
- 100GbE proposal
- 50GbE proposal
- Open work items
- Conclusion

Introduction

- This presentation contains PCS and FEC baseline proposals, for both 50 GbE and NG 100GbE
- The proposals are based on a 50G/lane FEC architecture
- Details of the FEC distribution and associated FEC performance require additional input to determine a consensus position, but this does not affect the core of this proposal

References

- This proposal is based upon much of the work in the following presentations:
http://www.ieee802.org/3/50G/public/adhoc/archive/nicholl_051116_50GE_NGOATH_adhoc-v2.pdf
http://www.ieee802.org/3/50G/public/adhoc/archive/nicholl 042716 50GE NGOATH adhoc.pdf
http://www.ieee802.org/3/50G/public/adhoc/archive/nicholl_041316_50GE_NGOATH_adhoc-v2.pdf

NG 100GbE Overview

- Separate PCS \& FEC sub-layers
- same as current 100GbE architecture
- allows PCS and FEC to be physically separated
- Existing 100GbE (CL82) PCS
- no changes proposed
- supports optional CAUI-4 /w no-FEC
- RS $(544,514)$ FEC
- based on 802.3bj (CL 91) but distributed over 2 FEC lanes
- optimized for $50 \mathrm{~Gb} / \mathrm{s}$ lane rate AUI and PMD
- no FEC codeword interleaving (minimize latency)

NG 100GbE Use Cases

Integrated use case (long term, $2 \times 50 \mathrm{G}$ lane optimized):

Distributed use case:
optical module

NG 100GbE Tx PCS/FEC Data Flow

- PCS identical to 802.3ba Clause 82
- FEC sublayer data flow identical to 802.3bj Clause 91, with following exceptions:
- FEC symbols distributed over 2 rather than 4 lanes
- Minor change to AM mapping to accommodate fact that we are distributing over 2 rather than 4 FEC lanes
- AM is still inserted as a 5x257-bit block into the first 1285 message bits to be transmitted from every $4096{ }^{\text {th }}$ codeword (identical to 802.3bj Clause 91)

NG 100GbE Rx PCS/FEC Data Flow

- Reverse of Tx
- data flow identical to 802.3bj Clause 91
- minor changes to Alignment lock, Lane reorder, and AM mapping blocks because we are distributing over 2 rather than 4 FEC lanes

NG 100GbE - Alignment marker mapping to FEC lanes

5 bit pad

NG 100GbE - Proposed Mapping to IEEE Documentation

- PCS - Existing Clause 82
- no changes required
- FEC - Existing Clause 91
- minor changes required to a small number of sub-clauses to accommodate the distribution over 2 rather than 4 FEC lanes
- we could either edit the existing sub-clauses and add a '2 lane mode', or add new sub-clauses to capture the new 2 lane requirements (maybe with reference to the current '4 lane' sub-clauses).

50GbE Overview

- Separate PCS \& FEC sub layers
- same approach as $40 \mathrm{GbE} / 100 \mathrm{GbE}$ architecture
- allows PCS and FEC to be physically separated
- 4 lane PCS
- based on overclocked 40GbE PCS (Clause 82)
- AM spacing modified to support FEC sublayer
- supports optional 50GAUI-2 /w no-FEC
- RS $(544,514)$ FEC
- based on 802.3bj (CL 91), but FEC symbols distributed to a single lane
- optimized for $50 \mathrm{~Gb} / \mathrm{s}$ lane rate AUI and PMD
- no FEC codeword interleaving (minimize latency)

MAC/RS	
PCS	
FEC*	
PMA	
	50GAUI
PMA	
PMD	
	MDI
Medium	

[^0]
50GbE Use Cases

Integrated use case (long term, single lane optimized):

Distributed use case:
optical module

50GbE Tx PCS/FEC Data Flow

- PCS based on 802.3ba Clause 82
- Overclocked 40GbE PCS
- $4 \times$ PCS lanes running at $12.890625 \mathrm{~Gb} / \mathrm{s}$
- 4×66-bit alignment markers (AM), one per PCS lane
- AM spacing (start of one AM to the start of next AM) modified to 20480 66-bit blocks, to align with FEC codeword boundaries
- Standard PMA bit muxing to map the 4 PCS lanes onto optional 50GAUI-2
- FEC sublayer leverages 802.3bj Clause 91
- FEC encoder is $\operatorname{RS}(544,514)$ in a $1 \times 50 \mathrm{G}$ architecture
- Output of FEC encoder is mapped to a single $50 \mathrm{~Gb} / \mathrm{s}$ FEC lane
- A single 257-bit alignment marker (AM) is inserted into the first 257 message bits to be transmitted from every $1024^{\text {th }}$ codeword
- Simple AM mapping (4x64-bit PCS AMs + 1 bit pad)

50GbE Rx PCS/FEC Data Flow

50GbE - Alignment marker mapping to FEC lane

50GbE - Proposed Mapping to IEEE Documentation

- New 50GbE PCS Clause
- heavy reference to Clause 82
- similar to approach taken in 802.3by for 25GbE
- New 50GbE FEC Clause
- heavy reference to Clause 91
- similar to approach taken in 802.3 by for 25 GbE

Open Items

- FEC proposal is pending confirmation of FEC performance for the different PMDs:
- copper, backplane and optical
- Definition of AM bit patterns and details of AM mapping to FEC lanes
- Definition of OTN reference point

Conclusion

- This 50 GbE and NG 100 GbE baseline proposes an architecture that includes:
- Separate PCS and FEC sub-layers
- PCS Based on Clause 82
- RS 544 FEC based on Clause 91
- Support for an optional $25 \mathrm{~Gb} / \mathrm{s}$ based AUI from host silicon
- Supports multiple implementation options
- Details of FEC distribution need some more input to determine the consensus position

[^0]: *FEC is a separate sublayer

