Copper Cable Electrical Specification Proposal

Chris Roth
May, 2016

one company , a world of innovation

Supporters

> Tom Palkert - Molex
> Scott Sommers - Molex
> Ali Ghiasi - Ghiasi Quantum
> Upen Kareti - Cisco
> Nathan Tracy - TE Connectivity

Purpose

》 Baseline proposal for 802.3 cd copper cable assembly consistent with adopted objectives

- Define a single-lane $50 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over copper twin-axial cables with lengths up to at least 3m
- Define a two-lane $100 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over copper twin-axial cables with lengths up to at least 3m
- Define a four-lane $200 \mathrm{~Gb} / \mathrm{s}$ PHY for operation over copper twin-axial cables with lengths up to at least 3m
> Provide data to make decisions once other TBDs are closed

S-parameter Adjustments

> Reuse S-parameters per 802.3bj Clause 92.10
> Reduce loss allocated to the cable in 92.10 .2

- Max Cable IL@ 13.28 GHz: 16.09 dB
> Reduce end to end loss budget in 92A. 5
- Max Channel IL@ 13.28 GHz: 28.9dB
»See roth_50GE_NGOATH_01a_0116.pdf for supporting cable data
> Aligned with diminico_3cd_01_0516.pdf

COM adjustments

, Several examples of parameter adjustments have been presented

- ghiasi_030216_50GE_NGOATH_adhoc.pdf
- kareti_50GE_NGOATH_02_0316.pdf
> Points of relative consensus
- Improve the package
- Adjust pre-cursor and post-cursor values for TX
- Add gain to CTLE
- Lengthen DFE to 15 or 16 taps
- Improve TX SNR
> Magnitudes are different but the approaches are similar

COM adjustments - Questions

>How does the highest loss cable type perform with both proposals?

- 3m 26awg
> Is there a happy medium?
» What DER will be required?
- Single largest impact on COM value
> What COM value is required?

COM adjustments - Analysis

, Use 6 different 3m 26awg QSFP cables to have a better sample size
> Run all cables using 3 COM configs

- Option 1: Based on kareti_50GE_NGOATH_02_0316.pdf
- Option 2: Based on ghiasi_030216_50GE_NGOATH_adhoc.pdf
- Option 3: Draws from both
> Run at 3 different DER's
- 1e-4
- 1e-5
- 1e-6

COM adjustment - Options

, Option 1: Most conservative

- Moderate package improvement
- Moderate increase in TX FFE complexity
- Large increase in CTLE gain
- Longer DFE with less powerful taps
> Option 2: Most aggressive
- Large package improvement
- Moderate increase in TX FFE complexity and power
- Moderate increase in CTLE gain
- Longer DFE with fairly powerful taps
- Higher SNR_TX
> Option 3: Compromise
- Large package improvement
- Moderate increase in TX FFE complexity and power
- Moderate increase in CTLE gain
- Longer DFE with less powerful taps

COM adjustments - Analysis

Average COM vs DER

COM adjustments - Decisions

> Now that we have data for COM vs DER we can answer the question of what values should be used in the spec and develop a few options

COM Limits for Commercially Acceptable Yield @ a DER			
DER	Option 1 Limit	Option 2 Limit	Option 3 Limit
$1.00 \mathrm{E}-04$	3	3	3
$1.00 \mathrm{E}-05$	2.2	2.9	2.55
$1.00 \mathrm{E}-06$	1.3	2	1.6

Parameter	Option 1	Option 2	Option 3	Units
f_b	26.5625	26.5625	26.5625	GBd
f_min	0.05	0.05	0.05	GHz
Delta_f	0.01	0.01	0.01	GHz
C_d	[2.3e-4 2.3e-4]	[2e-4 2e-4]	[2e-4 2e-4]	nF
z_p select	[1 2]	[12]	[12]	
z_p (TX)	[12 30]	[12 30]	[12 30]	mm
z_p (NEXT)	[12 12]	[12 12]	[12 12]	mm
z_p (FEXT)	[12 30]	[12 30]	[12 30]	mm
z_p (RX)	[12 30]	[12 30]	[12 30]	mm
C_p	[1.1e-4 1.1e-4]	[1.1e-4 1.1e-4]	[1.1e-4 1.1e-4]	nF
R_0	50	50	50	Ohm
R_d	[55 55]	[55 55]	[55 55]	Ohm
f_r	0.75	0.75	0.75	*fb
c(0)	0.6	0.6	0.6	
c(-1)	[-0.15:0.05:0]	[-0.24:0.05:0]	[-0.25:0.05:0]	
c(-2)	[-.15:0.05:0]	[0:0.05:.6]	[0:0.05:0.6]	
c(1)	[-.35:0.05:0]	N/A	N/A	
g_DC	[-20:1:0]	[-18:1:0]	[-18:1:0]	dB
f_z	10.625	10.625	10.625	GHz
f_p1	10.625	10.625	10.625	GHz
f_p2	$1.00 \mathrm{E}+99$	$1.00 \mathrm{E}+99$	$1.00 \mathrm{E}+99$	GHz
A_v	0.45	0.45	0.45	V
A_fe	0.45	0.45	0.45	V
A_ne	0.65	0.65	0.65	V
L	4	4	4	
M	32	32	32	
N_b	15	16	16	UI
b_max(1)	0.5	0.75	0.5	
b_max(2..N_b)	0.2	0.375	0.2	
sigma_RJ	0.01	0.01	0.01	UI
A_DD	0.02	0.02	0.02	UI
eta_0	$2.60 \mathrm{E}-08$	$2.60 \mathrm{E}-08$	$2.60 \mathrm{E}-08$	V^2/GHz
SNR_TX	31.1	32	31.1	dB
R_LM	0.95	0.95	0.95	
DER_0	TBD	TBD	TBD	
COM Pass threshold	TBD	TBD	TBD	dB
Include PCB	1	1	1	Value

g_DC_HP	
f_HP_PZ	

Table 93A-3 parameters		
Parameter	Setting	Units
package_tl_gamma0_a1_a2	$[01.734 \mathrm{e}-31.455 \mathrm{e}-4]$	
package_tl_tau	$6.141 \mathrm{E}-03$	$\mathrm{~ns} / \mathrm{mm}$
package_Z_c	90	Ohm

Table 92-12 parameters		
Parameter	Setting	
board_t__gamma0_a1_a2	[0 4.114e-4 2.547e-4]	
board_tl_tau	$6.191 \mathrm{E}-03$	$\mathrm{~ns} / \mathrm{mm}$
board_Z_c	110	Ohm
z_bp (TX)	151	mm
z_bp (NEXT)	72	mm
z_bp (FEXT)	72	mm
z_bp (RX)	151	mm

Conclusions

>3m 26awg cables can be achieved in several ways
> Finalizing the COM limit should be simple since work has already been done to determine what limits are needed

Thank You

molex

