Copper Cable Electrical Specification Proposal

Chris Roth May, 2016

Supporters

- **>** Tom Palkert Molex
- >Scott Sommers Molex
- > Ali Ghiasi Ghiasi Quantum
- > Upen Kareti Cisco
- >Nathan Tracy TE Connectivity

Purpose

Baseline proposal for 802.3cd copper cable assembly consistent with adopted objectives

- Define a single-lane 50 Gb/s PHY for operation over copper twin-axial cables with lengths up to at least 3m
- Define a two-lane 100 Gb/s PHY for operation over copper twin-axial cables with lengths up to at least 3m
- Define a four-lane 200 Gb/s PHY for operation over copper twin-axial cables with lengths up to at least 3m

Provide data to make decisions once other TBDs are closed

S-parameter Adjustments

- Reuse S-parameters per 802.3bj Clause 92.10
- Reduce loss allocated to the cable in 92.10.2
 - Max Cable IL@ 13.28 GHz: 16.09dB
- > Reduce end to end loss budget in 92A.5
 - Max Channel IL@ 13.28 GHz: 28.9dB
- >See roth_50GE_NGOATH_01a_0116.pdf for supporting cable data
- >Aligned with diminico_3cd_01_0516.pdf

COM adjustments

- Several examples of parameter adjustments have been presented
 - ghiasi_030216_50GE_NGOATH_adhoc.pdf
 - kareti_50GE_NGOATH_02_0316.pdf
- **>** Points of relative consensus
 - Improve the package
 - Adjust pre-cursor and post-cursor values for TX
 - Add gain to CTLE
 - Lengthen DFE to 15 or 16 taps
 - Improve TX SNR
- Magnitudes are different but the approaches are similar

COM adjustments - Questions

- How does the highest loss cable type perform with both proposals?
 - 3m 26awg
- > Is there a happy medium?
- > What DER will be required?
 - Single largest impact on COM value
- > What COM value is required?

COM adjustments - Analysis

> Use 6 different 3m 26awg QSFP cables to have a better sample size

> Run all cables using 3 COM configs

- Option 1: Based on kareti_50GE_NGOATH_02_0316.pdf
- Option 2: Based on ghiasi_030216_50GE_NGOATH_adhoc.pdf
- Option 3: Draws from both

> Run at 3 different DER's

- 1e-4
- 1e-5
- 1e-6

COM adjustment - Options

> Option 1: Most conservative

- Moderate package improvement
- Moderate increase in TX FFE complexity
- Large increase in CTLE gain
- Longer DFE with less powerful taps

> Option 2: Most aggressive

- Large package improvement
- Moderate increase in TX FFE complexity and power
- Moderate increase in CTLE gain
- Longer DFE with fairly powerful taps
- Higher SNR_TX

> Option 3: Compromise

- Large package improvement
- Moderate increase in TX FFE complexity and power
- Moderate increase in CTLE gain
- Longer DFE with less powerful taps

COM adjustments - Analysis

COM adjustments - Decisions

Now that we have data for COM vs DER we can answer the question of what values should be used in the spec and develop a few options

COM Limits for Commercially Acceptable Yield @ a DER						
DER	Option 1 Limit	Option 2 Limit	Option 3 Limit			
1.00E-04	3	3	3			
1.00E-05	2.2	2.9	2.55			
1.00E-06	1.3	2	1.6			

Parameter	Option 1	Option 2	Option 3	Units
f_b	26.5625	26.5625	26.5625	GBd
f_min	0.05	0.05	0.05	GHz
Delta_f	0.01	0.01	0.01	GHz
C_d	[2.3e-4 2.3e-4]	[2e-4 2e-4]	[2e-4 2e-4]	nF
z_p select	[12]	[1 2]	[12]	1000
z_p (TX)	[12 30]	[12 30]	[12 30]	mm
z_p (NEXT)	[12 12]	[12 12]	[12 12]	mm
z_p (FEXT)	[12 30]	[12 30]	[12 30]	mm
z_p (RX)	[12 30]	[12 30]	[12 30]	mm
C_p	[1.1e-4 1.1e-4]	[1.1e-4 1.1e-4]	[1.1e-4 1.1e-4]	nF
R_0	50	50	50	Ohm
R_d	[55 55]	[55 55]	[55 55]	Ohm
f_r	0.75	0.75	0.75	*fb
c(0)	0.6	0.6	0.6	
c(-1)	[-0.15:0.05:0]	[-0.24:0.05:0]	[-0.25:0.05:0]	
c(-2)	[15:0.05:0]	[0:0.05:.6]	[0:0.05:0.6]	
c(1)	[35:0.05:0]	N/A	N/A	
g_DC	[-20:1:0]	[-18:1:0]	[-18:1:0]	dB
f_z	10.625	10.625	10.625	GHz
f_p1	10.625	10.625	10.625	GHz
f_p2	1.00E+99	1.00E+99	1.00E+99	GHz
A_v	0.45	0.45	0.45	V
A_fe	0.45	0.45	0.45	V
A_ne	0.65	0.65	0.65	V
L	4	4	4	
М	32	32	32	
N_b	15	16	16	UI
b_max(1)	0.5	0.75	0.5	
b_max(2N_b)	0.2	0.375	0.2	
sigma_RJ	0.01	0.01	0.01	UI
A_DD	0.02	0.02	0.02	UI
eta_0	2.60E-08	2.60E-08	2.60E-08	V^2/GHz
SNR_TX	31.1	32	31.1	dB
R_LM	0.95	0.95	0.95	
DER_0	TBD	TBD	TBD	
COM Pass threshold	TBD	TBD	TBD	dB
Include PCB	1	1	1	Value
	and the second			
g_DC_HP	[-7:1:0]	[-6:1:0]	[-6:1:0]	
f HP PZ	0.6640625	0.6640625	0.6640625	GHz

Table 93A–3 parameters						
Parameter	Setting	Units				
package_tl_gamma0_a1_a2	[0 1.734e-3 1.455e-4]					
package_tl_tau	6.141E-03	ns/mm				
package_Z_c	90	Ohm				
Table 92–12 parameters						
Parameter	Setting					
board_tl_gamma0_a1_a2	[0 4.114e-4 2.547e-4]					
board_tl_tau	6.191E-03	ns/mm				
board_Z_c	110	Ohm				
z_bp (TX)	151	mm				
z_bp (NEXT)	72	mm				
z_bp (FEXT)	72	mm				
z_bp (RX)	151	mm				

Conclusions

- >3m 26awg cables can be achieved in several ways
- Finalizing the COM limit should be simple since work has already been done to determine what limits are needed

Thank You

