Optical PAM4 RX SRS Results Update*

Frank Chang, Inphi Stephen Didde, Dave Weldon, Keysight Patrick Cui, Chao Tian, Mark Heimbuch, Source Photonics

* Thanks to UCSB for support during the test, and Mike Dudek and David Lewis for fruitful discussions

IEEE 802.3 Nov 2017 Plenary, 6-7 November 2017, Orlando, FL, USA

Problem Statements

- There exists Interoperability concerns/risks associated with SRS
 - □ Lack of correlation between TDECQ vs. Sensitivity
 - Lack of Rx validation with SRS testing

This is the first time ever to do such PAM4 SRS tests in industry

- 26Gbaud SRS is just in final stage of developments by test equipment vendors
- □ 53Gbaud SRS is not yet available in any form
- No SRS data available so far during 802.3bs spec definition
- □ Schedule optical SRS tests jointly with Source
 - □ From Week of 10/16th with Keysight at Inphi WVL lab
- Purpose:
 - To validate the existing SRS testing methodology
 - □ To help define SRS spec at 26GBd (and 53GBd due to similarity).

What's in mind to validate SRS?

Pattern comparison

- SSPRQ vs PRBS31
- Interplay between S.I. vs. G.N (and S.J.)
- Different ROSA behavior
 - Various prevailing product-grade PAM4 ROSAs
- Critical contributing parameters affecting SECQ
 - Redefine calibration procedures
- ER impact on SECQ
- Impact of number of taps for un-stressed and stressed
- Impact of TX filter BW
- Impact of RX filter BW
- Different DSP modes

Optical SRS Reqs for compliance tests

- Optical SRS is critical pass/fail specs on optical RX at TP3
 - □ SECQ=Stressed eye closure for PAM4

Parameter	Units	200GBASE- DR4	200GBASE- FR4	200GBASE- LR4	400GBASE- FR8	400GBASE- LR8	50GBASE- FR	50GBASE- LR	100GBASE- DR	400GBASE- DR4
Baudrate	GBaud	26.5625	26.5625	26.5625	26.5625	26.5625	26.5625	26.5625	53.125	53.125
Reference Rx bandwidth	GHz	13.28125	13.28125	13.28125	13.28125	13.28125	13.28125	13.28125	26.5625	26.5625
Reference Rx equalizer	Taps, Spacing	5, T								
TDECQ	dB	3.4	3.3	3.4	3.1	3.3	3.2	3.4	3.4	3.4
(max)										
SRS	dBm	-4.1	-3.6	-5.2	-3.1	-4.7	-5.1	-6.4	-1.9	-1.9
Dispersion (max)	ps/nm	0.8	6.7	9.5	1.9	9.5	3.2	16	0.8	<mark>0.8</mark>
Dispersion (min)	ps/nm	-0.93	-11.9	-28.4	-10.2	-50.8	-3.7	-18.6	-0.93	-0.93
∆Tdisp / Tsymbol (GVD max)	%	0.3%	2.7%	3.8%	0.8%	3.8%	1.3%	6.4%	1.3%	1.3%
∆Tdisp / Tsymbol (GVD min)	%	0.4%	4.7%	11.3%	4.1%	20.2%	1.5%	7.4%	1.5%	1.5%
Draft	-	P802.3cd D2.1	P802.3bs D3.3	P802.3bs D3.3	P802.3bs D3.3	P802.3bs D3.3	P802.3cd D2.1	P802.3cd D2.1	P802.3cd D2.1	P802.3bs D3.3
Clause	-	121	122	122	122	122	139	139	140	124

Optical SRS Testing Setups

Complex and expensive test setups

💢 Inphi

Establish hard/solid correlation between URS and SRS

Key calibration procedures:

- Select SSPRQ pattern
- Ideal LN MZM TX with SECQ~0.9dB
- Set ER=3.5dB
- TX E/O+LPF generate half of the SECQ
- S.J. 0.05mUI @100MHz
- S.I.+ G.N to meet SECQ=3.4dB

Generate stressed eyes – Ideal TX eye (SSPRQ)

attern Acquisition 🛛 (100%) 🖵

Limit (Patterns) : 1

Generate stressed eyes – ideal TX w/ LPF (SSPRQ)

Generate stressed eyes – Fully stressed (SSPRQ)

Generate stressed eyes – Fully stressed with TX Filtering by 12GHz Cable (SSPRQ)

Eye/Mask			File Se	tup Measure	Tools Apps	Help		0		Auto Scale R	tun Single Cle	ar 📃	e x
		Pattern Acquisition	(100%) 🖵	יייייייייי	unnunn	unnn				mmm		Limit (Pat	nnnn tterns) : 1
₩,	iye Mi	Waveform (\mathbf{E}										
FAM Setuc	eas											÷	• =
		/ 10.01308 ns			Channel 3A			10.01308 ns		TDECQ[3A]			
	Mas							sec. State					
Add Eye	sk Te	Network and the second			i Distancia de la procesa				Level 3				Maria a ta
Contour	st								605 µW	Aller.			
**									Lovel 2				
TDECQ	Adv								495 µV/				
	Eye												
₩									Level 1 384 µV/				
Outer OMA	$\langle\!\!\langle$			and and a second se				1000000		STATIST.			
				1390 March				- and the second	Level 0	AND			P.
1	PAN	28 (21 (21 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	Alteria	in the local day	and the second	No. States	and the second second second		<u>271 µW</u>	a destinations a			
Duter Extinction	4							Bar Barker		and the second se			Stand and
	F												
**		Results ()					÷ :	 (≫) ↓					
Linearity	Jser	Measurement	~ <u> </u>		ent Minimum	Maximum	Count						
		Linearity [RLM]]	F1 0.987	0.987	0.987	1						
		TDECQ	1	F1 4.82 dB	4.82 dB	4.82 dB	1						
		Outer ER	Ľ,	F1 3.573 dB	3.573 dB	3.573 dB	1						
		Outer OMA		F1 340.4 µW	340.4 μW	340.4 µW	1	_					
More (1/3)		Details	Limits	Setup			🖌 Annotations 듣					Beta.	
3A 77.5 L	אר) ארו 0	Trigger	~						Timebase	Acquisition	Frame Trigger	Pattern	
3B 500.0 0 W	μW/	26.562500 GBd 65535	3						Pos: 10.01308 n	31.99000534 pts/UI	26.562500 GBd 65535 UI	Lock Math	Signals

ER Impact on SECQ (SSPRQ)

SECQ behave differently under full or no stress

- ER is varied with changing RF modulation amplitude (Vpp) only

Note: Refer to DCA-M N1092B RX BW ~33GHz.

TX and Rx BW on SECQ (SSPRQ)

RX filtering impact differently for higher stressed cases.

Also look into the scenarios when TX is highly BW limited (next 2 slides).

TX and Rx BW on SECQ (SSPRQ)

RX filtering impact differently for higher stressed cases.

Under TX filtering at ~12GHz BW LPF cable

TX and Rx BW on SECQ (SSPRQ)

RX filtering impact differently for higher stressed cases.

Under TX filtering at ~9GHz BW LPF cable

The Number of Taps on SECQ (SSPRQ)

More taps help the most for higher or full stress

Also look into the scenarios when TX is highly BW limited (next 2 slides).

The Number of Taps on SECQ (SSPRQ)

More taps help the most for higher or full stress

Under TX filtering at ~12GHz BW LPF cable

Note: Refer to DCA-M N1092B RX BW ~33GHz at RX 13.28GHz filtering

The Number of Taps on SECQ (SSPRQ)

More taps help the most for higher or full stress

Under TX filtering at ~9GHz BW LPF cable

Note: Refer to DCA-M N1092B RX BW ~33GHz at RX 13.28GHz filtering

SSPRQ vs. PRBS31Q Pattern Comparison

SSPRQ

PRBS310

RX SRS Tests with PRBS31Q – Case 1

Case 1 with S.I. dominance

RX SRS Tests with PRBS31Q – Case 2

Case 2 with G.N. dominance

Compare Two Cases with PRBS31Q

Same SECQ=3.4dB but with different BER behavior

Summary & Recommendation

- Optical SRS are investigated extensively, major observations from preliminary results:
 - SRS setup is pretty complex, but stable and repeatable once well calibrated.
 - SSPRQ seems to show good representative of PRBS31 pattern
 - More Ref equalizer taps help the most for higher and full stress situation
 - Lower ER does not help high stressed signals due to small eye opening.
 - There exists strong interplay between G.N and S.I (with S.J.). G.N. impact most the BER degradation in SRS.
 - Ref transmitter used for SRS may not be able to represent "Non-ideal" product grade transmitters.
 - Data repeatedly show SECQ correlates well with BER flooring (or equivalently SNR). (Referring to <u>way_3bs_01a_0717.pdf</u> and <u>way_3bs_01a_0517.pdf</u>)
 - Correlation of SECQ with RX sensitivity seems to follow similar trend with validation, may still need re-investigated carefully (e.g. TX and ROSA dependent).

Recommendations:

- Production implementation could possibly induce interop risks.
- Each contributing items (and ratio) in setting SRS should be well defined in specs.

Thank You !

QUESTIONS?

