

# TX DIFFERENTIAL PRECODER FOR 50Gb/s ELECTRICAL LINKS

Raj Hegde & Magesh Valliappan

IEEE 802.3 50G/NGOATH Task Force Ad-Hoc, July 6<sup>th</sup>, 2016.

#### **Need for the Precoder**

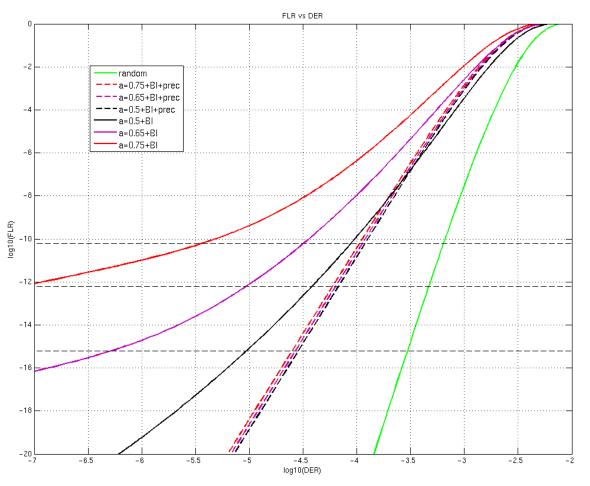
- FFE/CTLE and/or DFE are used to cancel ISI due to insertion loss
  - FFE/CTLEs generally enhance noise but do not cause burst errors
  - DFEs don't cause noise enhancement
    - High insertion loss can lead to large tap weights
    - Feedback structure can cause burst errors when the tap weight is high.
- Restrict DFE tap weights (limit 'a' value) is an option to limit bursts
  - Makes DFEs less effective
    - Residual ISI has to be compensated for in some other way
  - Higher insertion loss budget makes this option less attractive
  - No mechanism in the standard to check for its compliance
  - Renders the standard restrictive in terms of receiver design options
- Precoder can mitigate burst errors due to high DFE tap-1
  - Shaping higher DFE taps (taps 2, 3,...) is a lot easier
- To be used optionally by a 'DFE heavy' receiver
  - Doesn't impact other receiver architectures



### **Precoder deployment**

- Precoder to be used only when needed
  - Mandatory implementation in the TX.
  - Enabled when deemed beneficial
  - no negative impact on FFE/CTLE based receivers
- Chip-to-Chip segment
  - Can be enabled using the management interface
  - Shown in <u>Hegde\_3bs\_01a\_1115</u>
- Back Plane/ Direct Attach Cable application
  - Can be part of the far-side transmitter tuning mechanism
  - Shown in <u>healey\_3cd\_01\_0516</u>
- Does not impact an FFE based design
- Expands the available RX design space
  - In the spirit of the standard




### **Simulation Assumptions/Details**

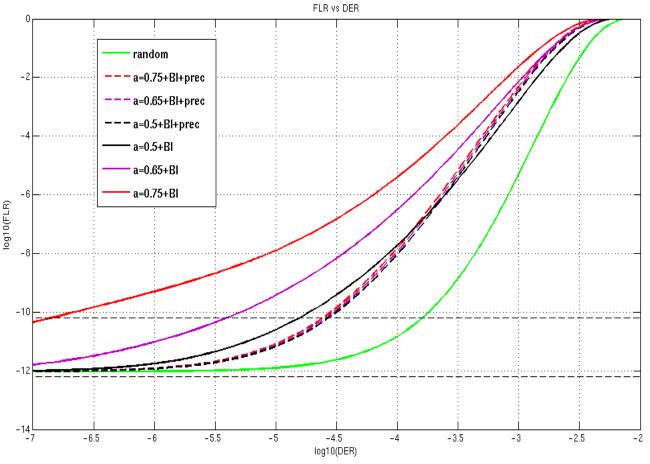
- RS (544, 514) FEC is assumed
  - No bit muxing
  - Symbol mutliplexing
    - Round robin distribution of FEC symbols to the PCS lanes & muxing in the PMA
    - Performance remains the same as multiplexing
- Gray Coding: Noise events can cause at most one bit error
- Burst error model
  - Same as <u>anslow\_3cd\_01\_0516</u>
- Target Performance levels
  - Frame Loss Ratio (BER equivalent): 6.2E-10 (1E-12), 6.2E-13 (1E-15), and 6.2E-15 (1E-18)
- Single PAM4 electrical link & Multi-part link scenarios



# Single Electrical Link – FLR vs DER0 with Bit Multiplexing

| Case                | DER0    |         |         |
|---------------------|---------|---------|---------|
| FLR                 | 6.2e-10 | 6.2e-13 | 6.2e-15 |
| Random              | 7.53e-4 | 4.67e-4 | 3.44e-4 |
| a=0.5               | 1.31e-4 | 3.84e-5 | 1.54e-5 |
| a=0.5 + precoder    | 1.6e-4  | 6.75e-5 | 3.81e-5 |
| Improvement         | 1.2     | 1.8     | 2.47    |
| a=0.65              | 5.45e-5 | 9.4e-6  | 1.8e-6  |
| a=0.65 + precoder   | 1.5e-4  | 6.36e-5 | 3.8e-5  |
| Improvement         | 2.75    | 6.8     | 21      |
| a=0.75              | 1.2e-5  | 7.52e-8 | N/A     |
| a = 0.75 + precoder | 1.42e-4 | 6.0e-5  | 3.34e-5 |
| Improvement         | 11.8    | 800     | >10000  |




- At FLR = 6.2E-10, 'effective a' due to the precoder is better than 0.5
- Allows a BER target of 1E-4 for Back-plane and Direct Attach Cable applications



# Multi-segment Link – FLR vs DER0 with Bit Multiplexing

Optical link is held at BER = 2.4e-4 (0.16dB penalty)

| Case                | DER0    |  |
|---------------------|---------|--|
| FLR                 | 6.2e-10 |  |
| Random              | 2.73e-4 |  |
| a=0.5               | 3.7e-5  |  |
| a=0.5 + precoder    | 5.3e-5  |  |
| Improvement         | 1.43    |  |
| a=0.65              | 1.26e-5 |  |
| a=0.65 + precoder   | 5e-5    |  |
| Improvement         | 4       |  |
| a=0.75              | 1.21e-6 |  |
| a = 0.75 + precoder | 4.8e-5  |  |
| Improvement         | 40      |  |



- At FLR = 6.2E-10, 'effective a' due to the precoder is better than 0.5
- Allows a BER target of 1E-5 for chip-to-chip application



# **Summary**

- Effective for burst error protection due to dominant 1<sup>st</sup> tap in the DFE
  - Alternative of limiting 'a' would impact link performance.
- Minimal overhead in terms of area, power, and design complexity
  - less than 500 gates and approximately 50-80um<sup>2</sup> area
- Bypass-able option with minimal overhead
  - No impact to an RX that doesn't need it

