

Return Loss of Test Channel for Rx ITT in Clause 136 (#72)

Yasuo Hidaka Fujitsu Laboratories of America, Inc.

IEEE P802.3cd Task Force, Ad Hoc Conference Call, July 5, 2017

Background

- For Clause 93 (100GBASE-KR4), return loss of test channel for Rx ITT was specified to meet EQ (93-2)
 - EQ (93-2) is return loss of test fixture, that is rather good
 - With good return loss of test channel, broadband noise is always injected
 - Overstress of broadband noise may have contributed to ample margin of interoperability for existing 25G NRZ SerDes specs
- I proposed to do the same for Annex 120D and Clause 137
 In Ad Hoc call on June 14th, 2017
- A feedback in June 14th Ad Hoc was that cable PHY should be specified independently from backplane PHY
 Even if the same SerDes devices will be used for both of PHYs

This presentation focuses on Rx ITT for cable PHYs

Clause 92 (100GBASE-CR4)

- Requirements for the test channel quality
 - The cable assembly meets the <u>cable assembly COM</u> in 92.10.7.
 - Specified in 92.8.4.4 and 92.8.4.4.2
 - ILD (insertion loss deviation) is recommended to be as small as practical.
 - Specified in 92.8.4.4.3
 - IL fitting parameters are recommended to be close to values in Table 92-8.
 - Specified in 92.8.4.4.3
 - (No need to meet the cable assembly characteristics in 92.10 (e.g. RL)) ???

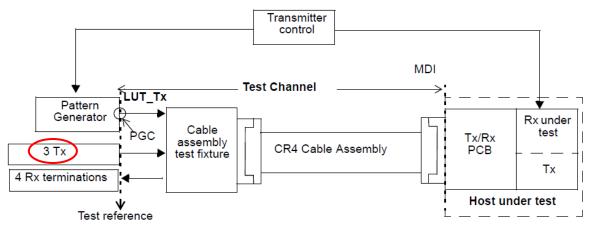
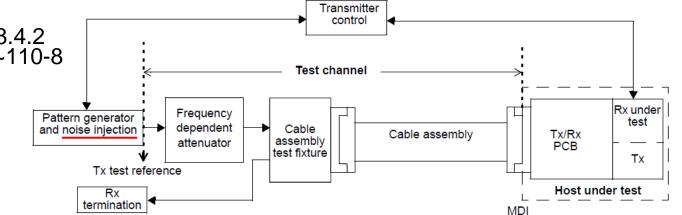


Figure 92–9—Interference tolerance test setup


- 3 far-end TXs are used as the noise source for calibration
 - Broadband noise was not used in Rx ITT in Clause 92

Clause 110 (25GBASE-CR)

Requirements for the test channel quality

- The cable assembly meets the <u>cable assembly COM</u> in 110.10.7.
 - Specified in 110.8.4.2
- The cable assembly meets the <u>cable assembly requirements</u> in 110.10
 - Specified in 110.8.4.2.2
 - 110.10.3 refers to 92.10.3 cable assembly differential return loss, EQ 92-27
- The cable assembly *test fixture* meets the requirements in Annex 110B.1
 - Specified in 110.8.4.2.3
 - 110B.1.3.2 refers to 92.11.3.2 mated test fixture differential return loss, EQ 92-38
- Insertion loss
 - Specified in 110.8.4.2 and Table 110-6~110-8

NOTE—The MDI of the host under test is not included in the test channel.

Figure 110-3a—Interference tolerance test setup

Broadband noise is added to the signal before the Tx test reference

Clause 136 (50GBASE-CR, etc) in D2.0

Requirements for the test channel quality

- The cable assembly meets the <u>cable assembly COM</u> in 136.11.7.
 - Specified in 136.9.4.2
- The cable assembly meets the <u>cable assembly requirements</u> in 136.11
 - Specified in 136.9.4.2.2
 - 136.11.3 refers to 92.10.3 cable assembly differential return loss, EQ 92-27
- The cable assembly *test fixture* meets the requirements in Annex 136B
 - Specified in 136.9.4.2.2
 - 136B.1.1.2 refers to 92.11.3.2 mated test fixture differential return loss, EQ 92-38
- Insertion loss
 - Specified in 136.9.4.2 and Table 136-13

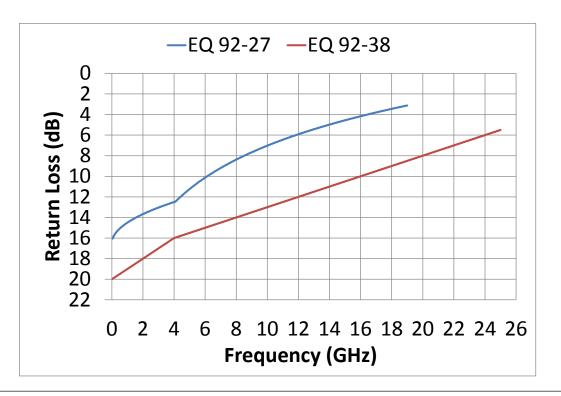
Transmitter control Test channe Rx under Frequency Pattern generator test dependent Cable and noise injection Cable assembly Tx/Rx assembly attenuator PCB test fixture Тχ Tx test reference Host under test Rx termination MDI

NOTE-The MDI of the host under test is not included in the test channel.

Figure 110-3a—Interference tolerance test setup

Broadband noise is added to the signal before the Tx test reference

Test Channel seems too loose


- Quality of test channel is just same as channel
 - The cable assembly in the test channel is required to meet just
 - The cable assembly COM
 - The cable assembly requirements (e.g. differential return loss, EQ 92-27)
 - In Clause 92, ILD was recommended to be as small as possible
 However, this recommendation was removed in Clause 110 and 136
- Only test fixture is restricted more tightly than channel
 E.g. mated test fixture meets the differential return loss, EQ 92-38
- We should tighten test channel in the same way as backplane
 We may specify its return loss as the test fixture grade by EQ 92-38
 Same as backplane PHYs which also use return loss of test fixture (EQ 93-2)
 Need to check feasibility

EQ 92-27 vs EQ 92-38

EQ 92-27 : cable assembly differential return loss $Return_Loss(f) \ge \begin{cases} 16.5 - 2\sqrt{f} & 0.05 \le f < 4.1 \\ 10.66 - 14 \log_{10}(f/5.5) & 4.1 \le f \le 19 \end{cases}$

EQ 92-38 : mated test fixture differential return loss $Return_Loss(f) \ge \begin{cases} 20 - f & 0.01 \le f < 4 \\ 18 - 0.5f & 4 \le f \le 25 \end{cases}$

Test Data for Feasibility Study

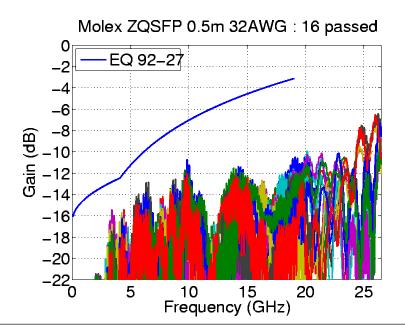
Molex zQSFP to zQSFP cable data

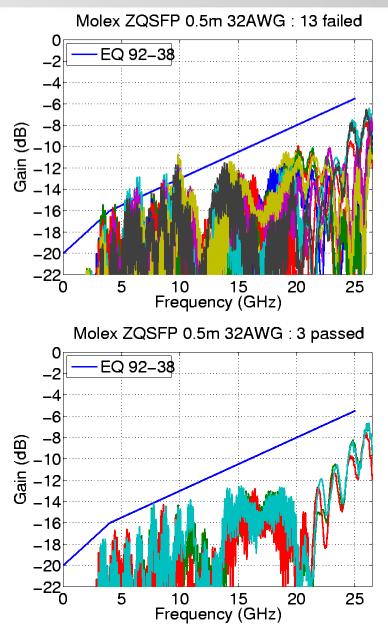
- Measured between TP1 and TP4 using MCBs at both ends
- Contribution to 50G and NGOATH Study Group by Chris Roth (Molex)
- http://www.ieee802.org/3/50G/public/channel/index.html

5 cable types (8 THRU channels for each cable type)

Туре		Insertion Loss at 13.28GHz (dB)			Relevant Rx ITT Test
		min	typ	max	Column in Table 136-13
A	0.5 meter 32 AWG	8.2360	8.4142	8.7035	Test 1 (8-10dB)
В	1 meter 30 AWG	9.9715	10.2465	10.5423	N/A
С	1 meter 26 AWG	7.9745	8.2035	8.3921	Test 1 (8-10dB)
D	2 meter 26 AWG	11.1135	11.3041	11.5613	N/A
Е	3 meter 26 AWG	14.3190	14.4033	14.5195	Test 2 (14.06-16.06dB)

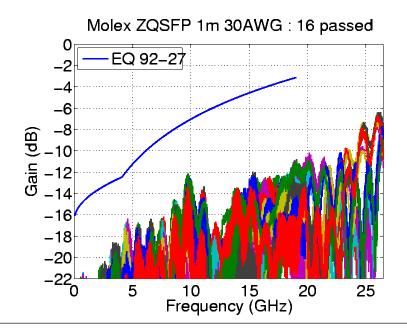
Checked all 16 ports for each cable type

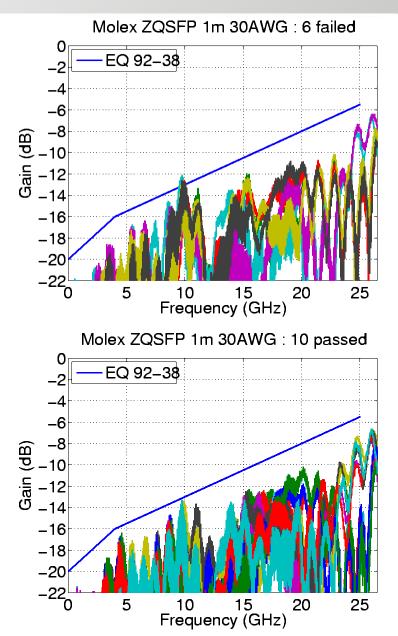

Checked both of S11dd and S22dd for each of all 8 THRU channels


Type A: 0.5 meter 32 AWG

EQ 92-27 (graph below)0 failed, 16 passed

EQ 92-38 (graphs on right)
 13 failed, 3 passed
 Worst violation 2.3248 dB

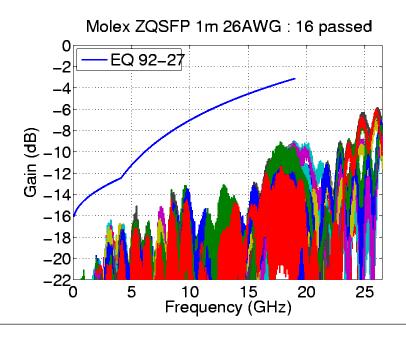

Type B: 1 meter 30 AWG

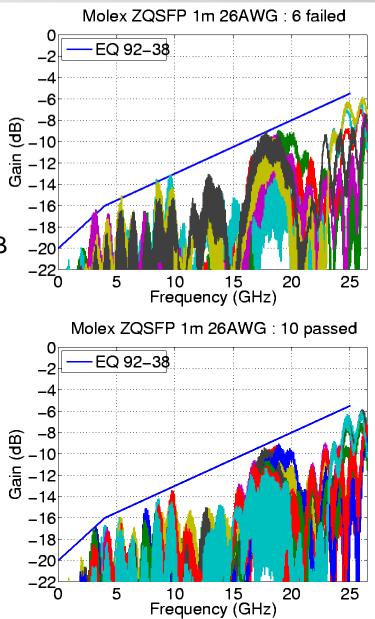


EQ 92-27 (graph below)0 failed, 16 passed

EQ 92-38 (graphs on right)
 6 failed, 10 passed

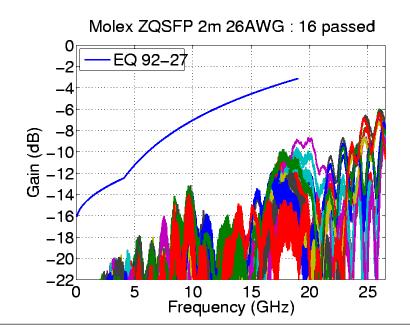
Worst violation 0.9652 dB

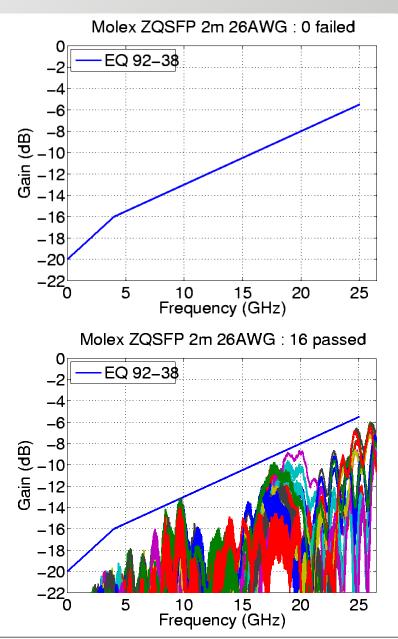




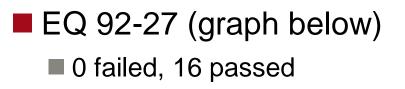
Type C: 1 meter 26 AWG

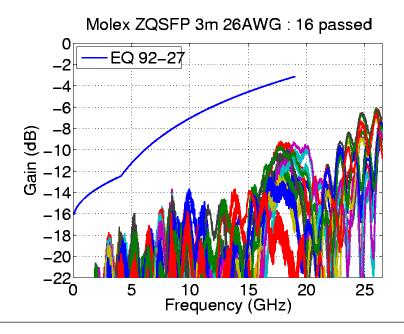
- EQ 92-27 (graph below)
 - 0 failed, 16 passed
- EQ 92-38 (graphs on right)
 - 6 (barely) failed, 10 passed
 - Worst violation 0.3715dB
 - Violation 0.2410dB, 0.2005dB, 0.0962dB in the other three 4-lane bundles

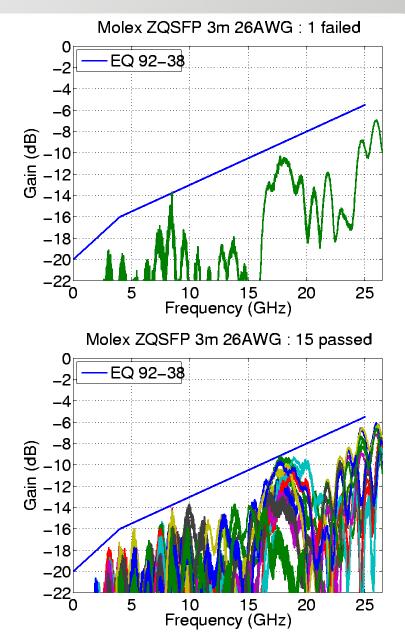



Type D: 2 meter 26 AWG

EQ 92-27 (graph below)0 failed, 16 passed


EQ 92-38 (graphs on right)0 failed, 16 passed


Type E: 3 meter 26 AWG



EQ 92-38 (graphs on right)

- 1 barely failed, 15 passed
 - Worst violation 0.0649 dB
 - Just at one data point

Summary

- Prior cable PHYs did not specify return loss of test channel for Rx ITT tighter than channel
 - In Clause 92, insertion loss deviation was recommended to be as small as possible, but not any more in Clause 110 or Clause 136 D2.0
- However, good test channel for Rx ITT is important for cable PHYs regarding to interoperability between channel and Rx for the same scenario as backplane PHYs
 - This has been explained in hidaka_061417_3cd_02_adhoc-v2.pdf and my several former presentations in the context of backplane PHYs
 - It is feasible to tighten return loss of test channel by EQ 92-38
 Results of Type-E indicate that there is no problem for Test 2
 Results of Type-C indicate that it may be critical or a little hard for Test 1
 It should be OK if we relax the equation by 0.1dB for Test 1

My proposal

Specify the differential return loss of the test channel at <u>Rx test</u> reference including the cable assembly by Equation (92-38)

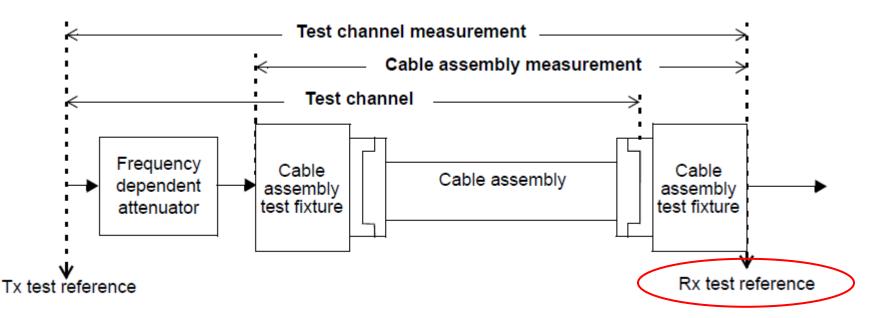


Figure 110–3b—Test channel calibration

Optionally, we may relax the equation by 0.1dB for Test 1.

However, we should not relax for Test 2

• Because Test 2 is more critical than Test 1 regarding to interoperability.

Thank you