802.3cd: proposed change in TDECQ method and reference receiver equalizer.

Authors: Marco Mazzini – Cisco David Leyba – Keysight Matt Traverso – Cisco

Problem

- Several contributions raised the concern that many units that are able to close the link with good sensitivity/BER margins might fail TDECQ test.
- There is no convincing data showing 1dB-1dB TDECQ vs. link BER penalty correlation (raised at IEEE <u>Sept</u> <u>meeting</u>).

This is leading into two main proposals:

- 1. Keep current TDECQ limits and increase number of FFE taps into the reference receiver equalizer;
 - Would drive developers to target more complex equalizers.
- 2. Increase TDECQ maximum limits;
 - Would change the 'Allocation for penalties (for max TDECQ)', used to define PMD budgets making these more challenging in terms of receiver sensitivity limits.

None of these provide a rationale about first two points.

So we would like to propose a change in the TDECQ method, that can be useful to overcome the problem and address future PMD definition too.

PAM4 signals: average versus optimum thresholds (1).

Into TDECQ method (802.3bs, 121.8.5.3), sub-eye threshold levels Pth1, Pth2, and Pth3, are determined from the OMA_{outer} and so are <u>average</u> thresholds for each of the three PAM4 eyes diagram (Pave) as defined in Equation (121–1), Equation (121–2), and Equation (121–3).

But in real implementations the optimum thresholds at lower BER are different from the average ones.

This is true even for a very clean eye, with lot of available bandwidth.

0/1 & 2/3 optimum thresholds are closer to levels 1 and 2 respectively

Figure 121–5—Illustration of the TDECQ measurement

14.78068.ns Eye Contours 🐟	Memory 1		14.78068.ns Eye Contours	TDE	CQ[M1]		Measurement		Current
Memory 1 1.0E-6			TDECQ[M1] 1.0E-6				TDECQ	M1	1.00 dB
1.0E-9	Threshold 3		1.0E-9 1.0E-5	Threshold 3 258 mV			Eye 2/3 Level	F1	258.6 mV
1.0E-5 2.0E-4	Threshold 2	•	1.0E-7 1.0E-8 TDECO[M1]	Threshold 2		•	Eye 1/2 Level	F1	-200 µV
	s ov		1.0E-9				Eye 0/1 Level	F1	-253.4 mV
- Alar	Threshold 1 -258 mV		and the second second	-256 mV			Linearity [RLM]	F1	0.982
							TDECQ	F1	0.27 dB
							Outer OMA	F1	772.6 mV

Real receivers will implement threshold optimization to get the lowest BER.

Above example: clean electrical eye, 773mV VMAouter, @53GBaud, lab-grade equipment, observed BW = 60GHz.

PAM4 signals: average versus optimum thresholds (2).

In the optical domain, we also have to consider laser RIN, so expect to have more noise over levels 2 and 3.

Real receivers will implement threshold optimization.

And also consider some residual distortion after equalization.

Below example over one of the <u>ad-hoc published</u> waveforms: L2 RMS > L3 RMS.

	14.78185 ns Eye Contours TDECQ[M1]	Results 🕑				
	TDECQ[M1] 1.0E-6	Measurement	Current	Minimum	Maximum	Count
	1.0E-5 1.0E-5	Level 3 RMS	F1 156 μW	156 μW	156 µW	1
		Level 2 RMS	F1 200 μW	200 µW	200 µW	1
	10E-9 Threshold 2	Level 1 RMS	F1 160 μW	160 μW	160 µW	1
		Level 0 RMS	F1 120 μW	120 µW	120 µW	1
For this case, $1/2$ ave _{th} $\neq 1/2$ opt _{th}	L28 mW	Linearity [RLM]	F1 0.882	0.882	0.882	1
		TDECQ	F1 2.24 dB	2.24 dB	2.24 dB	1
		Outer OMA	F1 6.570 mW	6.570 mW	6.570 mW	1

So we've been back to results presented in <u>mazzini 3bs 01 0917</u> to verify if the optimum threshold can provide a better TDECQ/Sensitivity slope fit.

53GBaud PAM4 TX/RX : sensitivity/TDECQ correlation.

Same set-up and waveforms presented in mazzini 3bs 01 0917

- 1. Different Driver settings allow to change over different TX characteristics.
- 2. The TX PRBS20 pattern is given to both sampling scope and real time scope (after O/E conversion).
- 3. The same reference 5T receiver equalizer is used when run the TDECQ algorithm and the sensitivity test.
- 4. We then calculated delta TDECQ and delta sensitivity results over two different TX waveforms.
- SSPRQ pattern available in our labs, but not yet for this experiment.
- TDECQ algorithm applied with no fiber (SECQ).
- Overall O/E BW of ≈30GHz.

Two PRBS20 waveforms were aquired with Keysight DCA-M N1092A scope, then TDECQ algorithm New <u>results (</u>P.05.70.687 SW) are still in line with ones already presented.

The reference equalizer return similar taps weights, the 6dB transmitter show better TDECQ (2.98dB) than the 10.26dB

transmitter (TDECQ = 4.98dB). The right eye in principle would <u>not</u> achieve the BER limit.

53GBaud PAM 4 TX/RX : sensitivity/TDECQ correlation.

These same PRBS20 waveforms were processed by Keysight by considering:

- Threshold optimization into TDECQ algorithm.
- Equalization is done at 0.5UI sample location, with 0.1UI window applied.

Comments

- Several contributions raised the concern that current TDECQ definition might fail many good units that are able to pass the link test.
- We think one explanation could be in the fact that all actual PAM4 receivers (have to) implement receiver threshold optimization.
 - Shown good match between SECQ/TDECQ values and sensitivity BER floor considering same reference 5T receiver.
- The change will not impact good transmitters, where $Average_{th} \cong Optimum_{th}$ one.
- It will give some more margin to worsen transmitters, <u>still passing</u> current TDECQ limits with this new (but more realistic) definition of the reference receiver.
 - Keep freedom to use less complex equalizers.
 - No changes in current TDECQ/SECQ values.
- We expect better match between TDECQ/SECQ and sensitivity, so we think this change in the TDECQ method can be useful to address future PMD power budget too.

Suggested remedy

- Into 802.3cd, paragraph 138.8.5 and 140.7.5, add sentence
 - The precise threshold amplitude position is optimized to further minimize TDECQ.
- Into paragraph 139.7.5.3, change sentence 'TDECQ for 50GBASE-FR and 50GBASE-LR is measured as described in 121.8.5.3 with the
 exception that the reference equalizer is as specified in 139.7.5.4 and the precise threshold amplitude position is optimized to
 further minimize TDECQ'.

THANK YOU

BACK-UP

Preset	5 Apps Help Auto Run Stop Clear	Custom	214.15 TDECQ[M]	Custom Y +	
Custom Y +	กลางการการการการการการการการการการการการการก	Taps		Taps	
Taps		Automatic Taps Iterative Optimization Recalculate		Automatic Taps V Iterative Optimization	
✓ Automatic Taps ✓ Iterative Optimization Recalculate	्या विक्र	Taps per UI:		Taps per UI:	
Taps per UI:	10,03962 ns	Number of Taps:		Number of Taps: 5 V A	and the second
	Memory 1	Tap Values:		0.076688, -0.354098, 1.508371, -0.116784, -0.114178	
Number of Taps:		0.047115, -0.298409, 1.322859, -0.176816, -0.094749 Number of Taps: 5 Precursors: 2 DC Gain: 1.00000		Number of Taps: 5 Precursors: 2 DC Gain: 1.00000	
Tap Values: 0.0418550.277460. 1.5758380.2562900.083944		Advanced			0.55 01
Number of Taps: 5 Precursors: 2 DC Gain: 1.00000			(Memory 1	Noise Processing	
Advanced		Noise Processing		✓ Preserve Noise	
(*)		Input Noise Bandwidth:		Input Noise Bandwidth:	
Noise Processing		Track Input Bandwidth 26.56 GHz 🔽 🔨		Track Input Bandwidth 26.56 GHz	
Preserve Noise	UT 0.55 UT	,			
Input Noise Bandwidth:					
Track Input Bandwidth	⊗ ≢				6dB 0 55111
		Results 🕞	000, 0.301 _©	Results 🕞	0.5501
		Measurement Current Minimum Ma	ximum Count	Measurement Current Minimum Maximu	m Count
Preset		Preset	товс	Preset	
Custom Y +		Custom Y +		Custom V +	TDECC
Taps		Taps		Taps	
✓ Automatic Taps ✓ Iterative Optimization Recalculate		Automatic Taps 🖌 Iterative Optimization Recalcu	late	Taps per UI:	
Taps per UI:	(DAUSE w)	Taps per UI:		Number of Taps: 5	
	Signals recorded to Tocco(M1)	Number of Taps: 5 Y		Tap Values:	
		Tap Values:		0.077411, -0.417378, 1.653901, -0.235206, -0.078728	
Tap values: 0.055770, -0.300052, 1.640036, -0.357531, -0.038223		0.062885, -0.355455, 1.651254, -0.299471, -0.059214 Number of Taps: 5 Precursors: 2 DC Gain: 1.0		Advanced	0.45 UT 0.55 UT 1 UT
Number of Taps: 5 Precursors: 2 DC Gain: 1.00000		Advan	ced (Men	\odot	Memo
Advanced				Noise Processing	
۳ (Noise Processing		Preserve Noise	
- Noise Processing		Preserve Noise Input Noise Bandwidth:		Input Noise Bandwidth	and the second se
V Preserve Noise		Track Input Bandwidth			
Input Noise Bandwidth:	0.40 01				
Track Input Bandwidth 26.56 GHz X	⊗ ∗				
			10.26dB. 0.5UI		10 26dB 0 55UI
Subscript State and State					

Summary of TDECQ values achieved by optimizing the equalizer at 0.45, 0.5 and 0.55UI respectively, without the 0.1UI phase window application. Similar results as slide 9.

Current

F1 3.06 dB

Considering mazzini 3bs 01 0917, 1dB sensitivity to 1dB TDECQ match seems to be at BER floor.

asurement

DECO

Minimum

Maximum

Count

Minimum

Count

Current

Updated transmitter results over two reference settings: PRBS20.

Presented in mazzini_3bs_01_0917

Two PRBS20 waveforms were aquired with Keysight DCA-M N1092A scope, then TDECQ algorithm (latest <u>beta</u> P.05.70.614 SW) was run on both of them.

The reference equalizer return similar taps weights, the 6dB transmitter show better TDECQ (2.98dB) than the 10.26dB transmitter (TDECQ = 4.98dB).

Processed signal BW.

We also post-processed the same saved waveforms including a 4th order BT filter, to understand if any strong difference between TDECQ and sensitivity occours because the actual receiver BW.

B

The 26.56GHz 4th order BT filtering has a small effect over the signal shape, tap weight at 1UI and calculated SNR. Sensitivity results with and without filter are almost the same.

Presented in mazzini_3bs_01_0917

Different TDECQ: Delta Sensitivity at 2.4E-4 BER.

PRBS20 sensitivity tests were done over the same two driver settings. Presented in mazzini_3bs_01_0917 The acquired waveforms were post-processed with 5T equalizer, 2 pre-cursor taps. The sampling phase was offset by +/-0.05UI, so to have in principle similar TDECQ impact.

The two sensitivity curves (same RX) cross each other.

Over these two particular case, we observed an inversion of the trend between sensitivity and TDECQ (best TDECQ case of 2.98dB shows 0.65dB worse sensitivity than 4.98dB TDECQ case). Next slide showing analysis done around BER 'flat' region.

Different TDECQ: Delta Sensitivity considering BER @2.4E-4 and floor with longer equalizer (17 T/2 taps).

Presented in mazzini_3bs_01_0917

Sensitivity delta @2.4E-4 leads into same comments as per slide 6.

On BER floor, calculating deltaOMA from deltaBER (deltaSNR) as deltaOMA = deltaSNR/2, we have now around 0.8dB equivalent deltaOMA.

Also in this case is shown no 1:1 correlation between delta sensitivity and dTEDCQ (2dB delta against 0.8dB delta).