Return Loss Alternative and COM-like Package RL Data

Richard Mellitz, Samtec

June 7, 2017

IEEE P802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force

Return Loss Dilemma

□ Return loss (RL) is often used to limit the effects from

- Specifications done at a particular reference impedance
- Devices and channel at different impedance targets
- □ RL is measured in the frequency domain
 - No clear data stream content impact
- □ Problem: Limit device reflections for all possible load cases
 - For impartments which occur in the time domain
- Potential Solution: Tighter RL limits
- Potential Solution: Include effect of a single bit reflection for all possible impedances
 - Essentially Pulse TDR (PTDR)

Many COM like package models pass return loss

IEEE P802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force

Is a tighter RL limit the answer? The thinking was we need margin for the test fixture impedance. So Maybe not a tighter RL.

Single bit reflection concept: I.e. Pulse TDR (PTDR)

Determine PTDR response for each Zt

Example of PTDR for 30mm COM package

Determine effective reflection coefficient for each sample in a unit interval

where i = 1 to numbers samples per UI and m = 1 to number of UI's in response

Reflection Test Metric (RTM)

□ Greatest ¹RSS(S_{i,1:m}) for any Zt
Or Bit stream convolution
□ Greatest CDF(PDF(S_{i,1:m}⊗ ²Constellation)) @BER for any Zt

Converting RTM to dB makes this somewhat similar to RL in the frequency domain

¹RSS is root of the sum of squares ²Constellation for PAM-4 = [-1 -1/3 1/3 1] Sound like an interesting idea but data has not been correlated to COM performance

□ Method: bit stream convolution

- All but 1 package would have more return loss than the reference COM package
- Maybe this method could be used to qualify the RITT test channels
- It appears the idea needs some work to correlate to COM results

Zt (ohms)						
45	50	55	PDF RL	Zc (ohms)	Rd(ohms)	
-4.91	-4.35	-4.71	dB	90	55	reference
-5.38	-4.65	-4.33	dB	83.5	55	fail
-4.83	-4.6	-3.73	dB	102	55	fail
-5.67	-4.99	-4.62	dB	83.5	50	fail
-5.09	-4.89	-3.98	dB	102	50	fail
-5.97	-5.67	-5.38	dB	83.5	45	pass
-5.36	-5.2	-4.26	dB	102	45	fail

Conclusion

□ More work is required.

• Do we need a better definition for impedance targets?

□ Reexamine the context of package reelections

- Investigate if PTDR to could be used qualify a test fixture or RITT channel
 - Measurement could quantify or minimize test fixture errors