
802.3 YANG
Base Interface Statistics

Rob Wilton

Cisco

2017 Jan 9 Pleminary - Remote

1

802.3 YANG Base Interface Module

Agenda:

• Introduction

• Proposed Ethernet Interface Statistics

• Questions/issues

2

Introduction

• Aim: To discuss/agree on base Ethernet
interface statistics in YANG

• Also agree what should go in the description
for an individual counter:

– Specifically how much repetition?

• After agreement, I’ll write them up for the
next revision of the model

3

Types of counter

• All interfaces have ietf-interfaces statistics:
– No need/benefit in any duplication

• So Ethernet statistics are in addition, in a separate
ethernet/statistics container, contains:
– Etherlike MIB style stats
– A subset of RMON Ethernet counters

• I propose that it does not contain any of:
– CSMA/CD specific counters (they go in separate module)
– Flow control counters (moved under flow control?)
– FEC/BER related counters (would go with those features?)
– LPI? (not sure about this one!)

4

IETF interface YANG statistics
(For reference. Every Ethernet interface always has these)

 +--ro statistics

 +--ro discontinuity-time yang:date-and-time

 +--ro in-octets? yang:counter64 = (total good bytes, inc fcs chars)

 +--ro in-unicast-pkts? yang:counter64 = good uni pkts (not drop/error/

 +--ro in-broadcast-pkts? yang:counter64 = good bcast pkts unknown)

 +--ro in-multicast-pkts? yang:counter64 = good mcast pkts “

 +--ro in-discards? yang:counter32 = e.g. QoS/ACL drops

 +--ro in-errors? yang:counter32 = e.g. Frame errors

 +--ro in-unknown-protos? yang:counter32 = e.g. Unknown proto drops.

 +--ro out-octets? yang:counter64

 +--ro out-unicast-pkts? yang:counter64

 +--ro out-broadcast-pkts? yang:counter64

 +--ro out-multicast-pkts? yang:counter64

 +--ro out-discards? yang:counter32

 +--ro out-errors? yang:counter32

5

IETF interface YANG counters
Reference YANG description for a counter (it is based on IFMIB)

 leaf in-unicast-pkts {

 type yang:counter64;

 description

 "The number of packets, delivered by this sub-layer to a

 higher (sub-)layer, that were not addressed to a

 multicast or broadcast address at this sub-layer.

 Discontinuities in the value of this counter can occur

 at re-initialization of the management system, and at

 other times as indicated by the value of

 'discontinuity-time'.";

 reference

 "RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts";

 }

6

RMON counters

I propose that we use a subset of the historical RMON
MIB Ethernet counters that we want:

• Advise IETF that this is what we are hoping to do, by:
– Emailing IEEE/IETF liaison alias + NETMOD WG.

– Also raising at Jan 30 IEEE/IETF coordination meeting to:
• Check whether any WG is planning, likely, or anticipated to

develop an RMON YANG model (noting that they could always just
exclude Ethernet statistics anyway).

• Check that they don’t have any concerns with us proceeding and
defining the necessary RMON Ethernet subset that is still
applicable.

– Note - I do not anticipate any concern from IETF.

7

Existing RMON MIB Ethernet counters
(For reference purposes only, defined in RFC 2819)

 etherStatsDropEvents Counter32, // Drop due to lack of resources

 etherStatsOctets Counter32, // Total bytes (good + bad)

 etherStatsPkts Counter32, // Total pkts (good + bad)

 etherStatsBroadcastPkts Counter32, // Total good bcast pkts

 etherStatsMulticastPkts Counter32, // Total good mcast pkts

 etherStatsCRCAlignErrors Counter32, // 64 <= pkt <= 1518, bad CRC/align

 etherStatsUndersizePkts Counter32, // pkt < 64, good CRC

 etherStatsOversizePkts Counter32, // pkt > 1518, good CRC

 etherStatsFragments Counter32, // pkt < 64, bad CRC

 etherStatsJabbers Counter32, // pkt > 1518, bad CRC

 etherStatsCollisions Counter32, // Collision estimate

 etherStatsPkts64Octets Counter32, // 64 byte pkts

 etherStatsPkts65to127Octets Counter32, // 65 – 127 byte pkts

 etherStatsPkts128to255Octets Counter32, // 128 – 255 byte pkts

 etherStatsPkts256to511Octets Counter32, // 256 – 511 byte pkts

 etherStatsPkts512to1023Octets Counter32, // 512 – 1023 byte pkts

 etherStatsPkts1024to1518Octets Counter32, // 1024 – 1518 byte pkts

8

Proposed Ethernet Counters (Ingress)
(Combined Etherlike MIB and RMON MIB)

This counters are in addition to the ietf-interfaces statistics.

in-octets-total counter64, // Total received bytes (good + bad)

in-pkts-total counter64, // Total received pkts (good + bad)

in-pkts-errors-fcs counter64, // 64 <= pkt <= 1518, bad CRC or alignment

in-pkts-errors-runt counter64, // pkt < 64, good frame

in-pkts-errors-fragment counter64, // pkt < 64, bad frame

in-pkts-errors-giant counter64, // pkt > MRU, good frame

in-pkts-errors-jabber counter64, // pkt > MRU, bad frame

in-pkts-drop-unknown-mac counter64, // good frame, dropped due to unknown DMAC

in-errors-symbol? counter64, // symbol errors (should this go elsewhere)?

in-errors-unknown-opcode? counter64, // (Should this go elsewhere)?

in-pkts-64 Counter64,

in-pkts-65-127 Counter64,

in-pkts-128-255 Counter64,

in-pkts-256-511 Counter64,

in-pkts-512-1023 Counter64,

in-pkts-1024-mru Counter64,

9

Proposed Ethernet Counters (Egress)
(Combined Etherlike MIB and RMON MIB)

This counters are in addition to the ietf-interfaces statistics.

out-octets-total counter64, // Total trans bytes (good + bad)

out-pkts-total counter64, // Total trans pkts (good + bad)

out-pkts-64 Counter64,

out-pkts-65-127 Counter64,

out-pkts-128-255 Counter64,

out-pkts-256-511 Counter64,

out-pkts-512-1023 Counter64,

out-pkts-1024-mru Counter64,

10

Ethernet Statistics questions (1 of 2)

• I’ve assumed that we also have a state leaf returning
the actual MRU that is used to determine if a frame is a
giant/jabber.

• Should all error/drop pkt counters be 32 bit or 64 bit?
– IETF interface error/drop counters are 32 bit, but looks like

this could wrap very fast for a 100G interface with 64 byte
packets.

• Do we need separate runts from fragments and giants
from jabbers?
– Could just have a single bad alignment/FCS counter.

• Do we need unicast/broadcast/multicast packet counts
separate from the IETF interface equivalent?

11

Statistics questions (2 of 2)

• Should symbol errors and unknown opcodes go in a
separate container?

• Do we still need histogram counters?
– Ideally would want to extend buckets beyond 1518 up to 8K.
– Could make entirely generic:

• Generic list of (min frame size, max frame size, count)
• Description would give some recommendations of common bucket

definitions.
• Benefit: Increased flexibility.
• Downsides: increases complexity and memory usage.

– Could be defined by 802.3 or perhaps elsewhere (as an
augmentation)

– Should these be part of the same Ethernet statistics container?

12

Ethernet Statistics Description Example

leaf in-pkts-errors-fcs {

 type yang:counter64;

 units frames;

 description

 "A count of receive frames that do not pass the FCS check, regardless of whether or not the

 frames are an integral number of octets in length, and regardless of the frame length.

 This count effective comprises aFrameCheckSequenceErrors and aAlignmentErrors added together.

 Note: Coding errors detected by the Physical Layer for speeds above 10 Mb/s will cause the

 frame to fail the FCS check.

 A frame that is counted by an instance of this object is also counted by the corresponding

 instance of 'in-errors' leaf defined in the ietf-interfaces YANG module (RFC 7223).

 Discontinuities in the values of this counter can occur at re-initialization of the management

 system, and at other times as indicated by the value of the 'discontinuity-time' leaf defined

 in the ietf-interfaces YANG module (RFC 7223).";

 reference

 "IEEE 802.3, 30.3.1.1.6, aFrameCheckSequenceErrors";

}

13

Statistics Description Questions

• Should I try and simplify these descriptions, or
keep the text? The additional text may help
ensure more consistent implementations.

• Discontinuity (and other common semantics)
could be described in the parent container
description statement, and then just
referenced here.

• Any opinions?

14

Thank you!

15

