# Energy Efficient Ethernet Call-For-Interest

IEEE 802.3 Working Group Dallas, TX November 14, 2006

# **Objective for this Meeting**

- To <u>measure the interest</u> in starting a study group for Energy Efficient Ethernet
  - Reduce power during low link-utilization
  - Compatible with existing cabling infrastructure
- We don't need to
  - Fully explore the problem
  - Debate strengths and weaknesses of solutions
  - Choose any one solution
  - Create PAR or five criteria
  - Create a standard or specification
- Anyone in the room may speak / vote
- **RESPECT**... give it, get it



## • Presentations

- "Network Energy Use," Bruce Nordman
- "Reducing Ethernet Energy Use," Hugh Barrass
- "The Feasibility of Energy Efficient Ethernet," Howard Frazier
- "Why Energy Efficiency Now?," Mike Bennett
- Discussion
  - Please hold questions till the end of the presentations
- Call for Interest
- Future Work

# **Network Energy Use**

Presented by Bruce Nordman Lawrence Berkeley National Lab U.S. Department of Energy

IEEE 802.3 Working Group Dallas, TX

### November 14, 2006

# The problem

- "Big IT" all electronics
  - PCs/etc., consumer electronics, telephony
    - Residential, commercial, industrial
  - 200 TWh/year
  - \$16 billion/year
  - Nearly 150 million tons of CO<sub>2</sub> per year
    - Roughly equivalent to 30 million cars!

PCs etc. are digitally networked now — *Consumer Electronics* (CE) will be soon One central baseload power plant (about 7 TWh/yr)

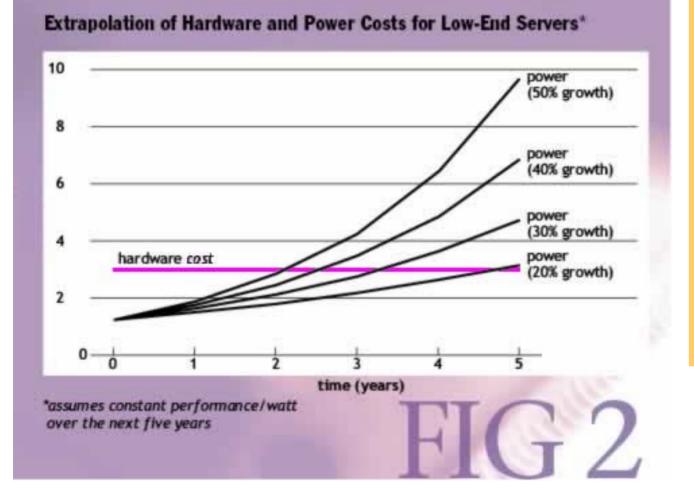


**Numbers represent** 

U.S. only

# The problem

- "Little IT" office equipment, network equipment, servers
  - 97 TWh/year
    - 3% of national electricity
    - 9% of commercial building electricity
    - Almost \$8 billion/year




#### • ... However

- Old data (energy use has risen)
- Doesn't include residential IT or networked CE products

Note: Year 2000 data taken from Energy Consumption by Office and Telecommunications Equipment in Commercial Buildings--Volume I: Energy Consumption Baseline Roth et al., 2002 Available at: <a href="http://www.eren.doe.gov/buildings/documents">http://www.eren.doe.gov/buildings/documents</a>

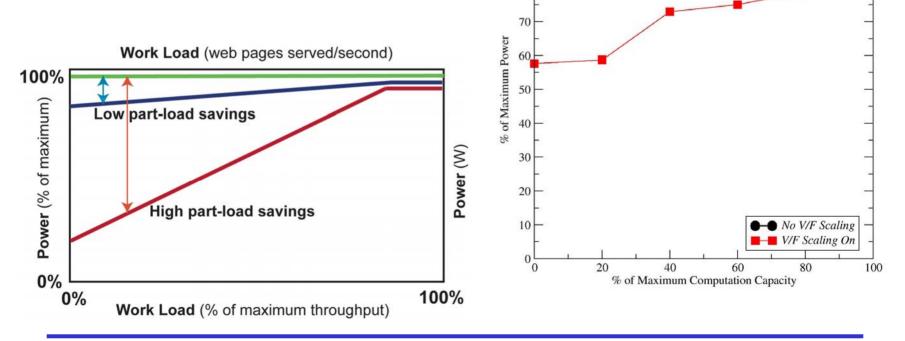
# The problem



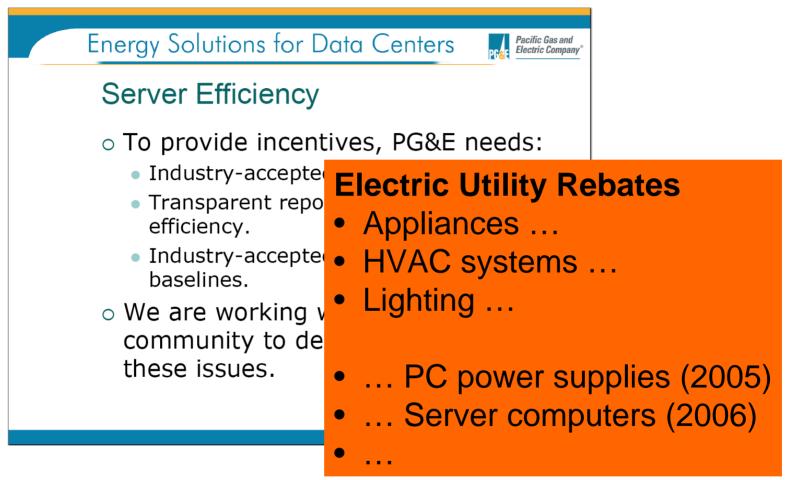
Unrestrained IT power consumption could eclipse hardware costs and put great pressure on affordability, data center infrastructure, and the environment.

Source: Luiz André Barroso, (Google) "The Price of Performance," ACM Queue, Vol. 2, No. 7, pp. 48-53, September 2005.

(Modified with permission.)


November 14, 2006

# Server industry response


Concept and real data showing how server power drops with computing load

8(

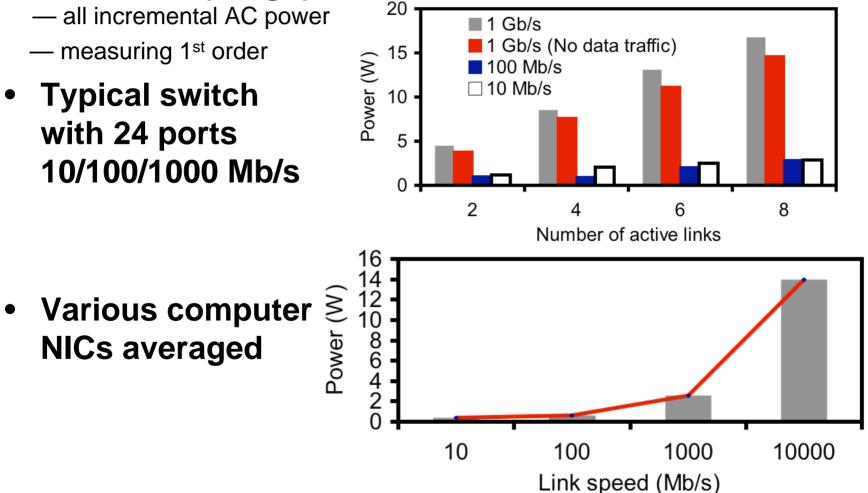
The SPECpower committee lacksquare100 is currently defining a 90 metric for this



# **Energy industry responds**



Reference: http://www.pge.com/docs/pdfs/biz/rebates/hightech/DataCenters\_slides.pdf


PG&E (California) provides rebates for more energy-efficient servers

# Link power

## **Results from (rough) measurements**

- all incremental AC power
- measuring 1<sup>st</sup> order
- Typical switch with 24 ports 10/100/1000 Mb/s

**NICs** averaged



## **Data center context**

- Networking power consumption significant portion of energy use in data centers
- Other components increasingly can modulate power to needed performance
- More and more data centers running into power and cooling infrastructure limits
- Server manufacturers all have jumped onto energy efficiency bandwagon
- Network industry can 'go green' with Energy Efficient Ethernet

# Network industry design criteria

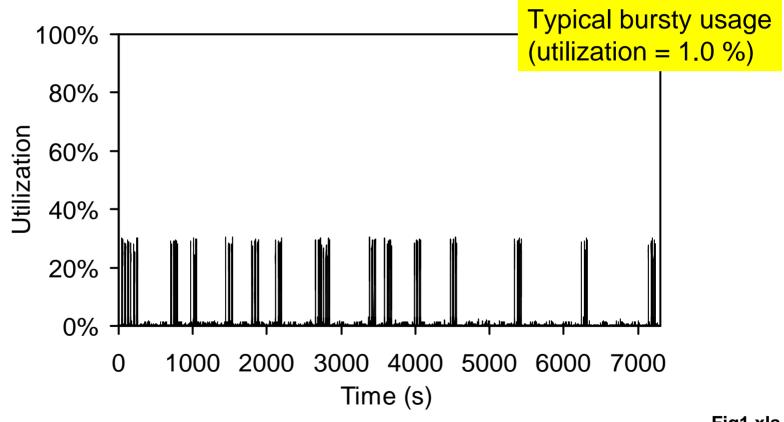
- Past/current practice
  - Design for maximum performance and ensure maximum power condition can be powered / cooled.
- Future practice needs
  - Design for normal usage, ensuring maximum energy efficiency at that operating point
  - Lower energy use at lower utilization
  - Design for minimum energy usage over operational lifetime

# **Network Energy Use**

#### Presented by Hugh Barrass Cisco (for Ken Christensen, University of South Florida)

#### IEEE 802.3 Working Group Dallas, TX

#### November 14, 2006


This material is based upon work funded by the National Science Foundation under grant CNS-0520081 for Christensen.

# Link utilization

- Desktop-to-switch links
  - Are mostly idle
    - Lots of very low bandwidth "chatter"
  - High bandwidth needed for bursts
    - Bursts are often seconds to hours apart
- Server links are also often not fully utilized
  - Higher speed links offer more opportunity to save energy
  - This is an area where more data is needed
- Evidence of low utilization (desktop users)
  - LAN link utilization is generally in range 1 to 5% [1, 2]
  - Utilization for "busiest" user in USF was 4% of 100 Mb/s
  - [1] A. Odlyzko, "Data Networks are Lightly Utilized, and Will Stay That Way", *Review of Network Economics*, Vol. 2, No. 3, pp. 210-237, September 2003.
  - [2] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, "A First Look at Modern Enterprise Traffic," *Proceedings of IMC 2005*, October 2005

# **Desktop links have low utilization**

- Snapshot of a typical 100 Mb Ethernet link
  - Shows time versus utilization (trace from Portland State Univ.)



# **Reducing the link rate**

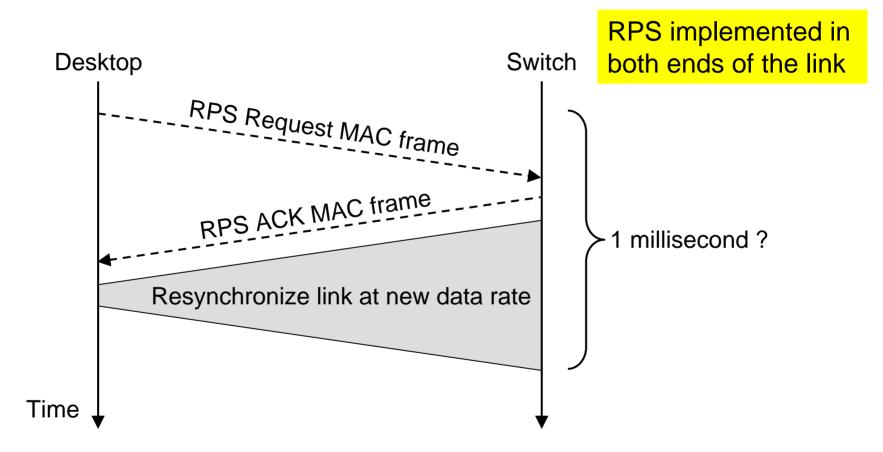
- Can (and does) save energy
- Some NICs drop link rate when a laptop is battery powered
  - Or, when a PC goes into sleep state
  - Turns-off PHY if no signal on link
- Match the link rate to utilization
  - High utilization = high link rate
  - Low utilization = low link rate
- Currently implemented using auto-negotiation
  - Set the Technology ability bits/message codes and then reset the link
  - Takes about 1000 milliseconds (a loooooooong time)

# **Need for fast transitions**

- Can extend the benefits of link data rate reduction
  - By making the data rate transition faster
- Need a faster way than auto-negotiation
  - When I need high data rate, I need it now
  - Can't advertise the desire to change to a higher speed
- Need a mechanism that is transparent to upper layers
- Need a *standard mechanism* to rapidly transition:
  - From low to high data rate
  - From high to low data rate
  - Within the capabilities established by Auto Negotiation

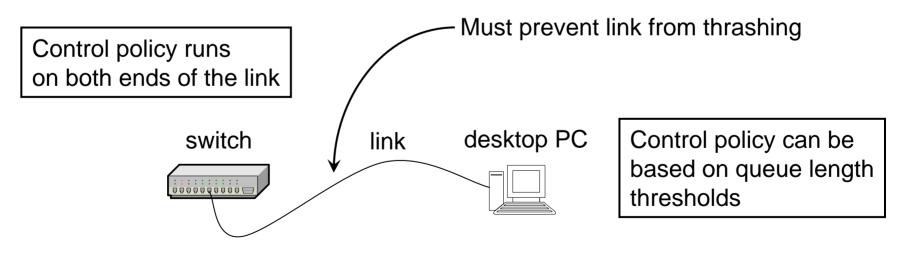
# **Matching Link Rate to Utilization**

## • Rapid PHY Selection (RPS) includes


- A PHY selection mechanism
- A control protocol

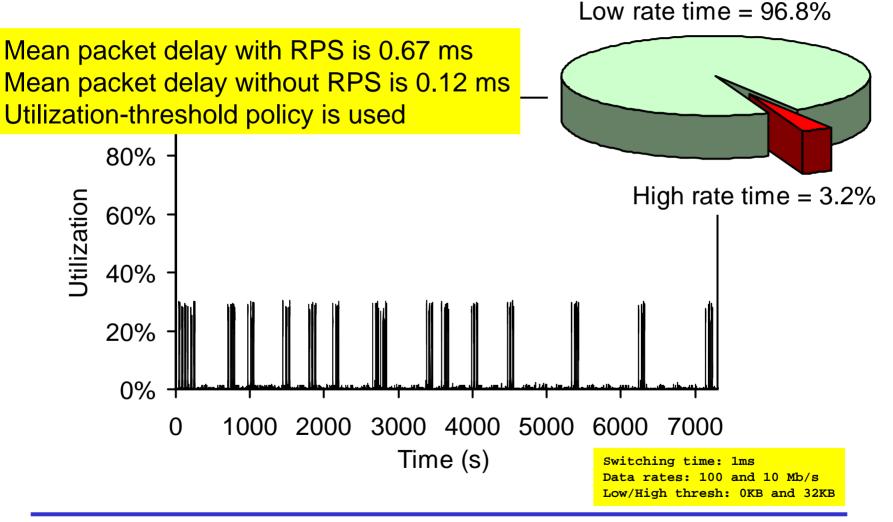
### • Open PHY-level challenges

- How fast to handshake?
- How to re-synchronize for 1 Gb/s
- How to re-synchronize for 10 Gb/s?
- Speed control policy issues need to be studied


# **Rapid PHY Selection**

• One possibility... MAC frame handshake




# **Control policy use of RPS**

- Control policy determines when to transition data rate
  - RPS can support many different control policies
  - Need to consider but not define
- Trade-off of energy saved versus packet delay
  - Energy savings achieved by operating at low data rate
  - Delay occurs during transition from low to high data rate



# **RPS – a picture tells the story**

Snapshot of a typical Ethernet link with simulated RPS



## **Benefits of Energy Efficient Ethernet**

- 1 Gb/s
  - Most NICs and most energy to be saved
  - Substantial benefits for homes and offices
  - Battery life benefit for notebooks
- 10 Gb/s (copper)
  - Reduces power burden in data centers
  - Reduces cooling burden in data centers
  - May increase switch/router port capacity
- Generally...
  - Provides real economic benefit through energy savings

# **Potential Savings from EEE**

#### Assume 100% adoption (U.S. Only)

- Residential
  - PCs, network equipment, other
  - 1.73 to 2.60 TWh/year
  - \$139 to \$208 million/year
- Commercial (Office)
  - PCs, switches, printers, etc.
  - 1.47 to 2.21 TWh/year
  - \$118 to \$177 million/year
- Data Centers
  - Servers, storage, switches, routers, etc.
  - 0.53 to 1.05 TWh/year
  - \$42 to \$84 million/year

## Total: \$298 to \$469 million/year

These figures do **not** include savings from cooling/power infrastructure

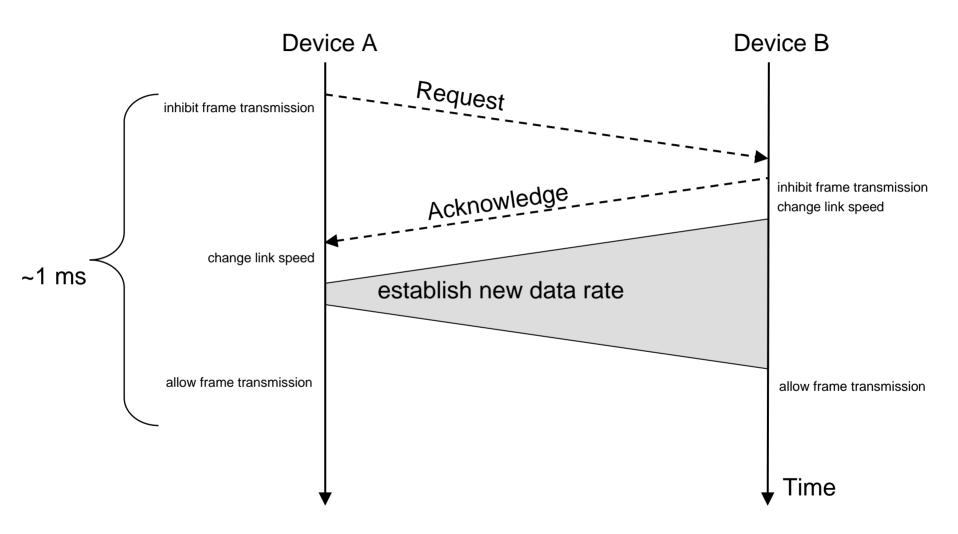
# Summary

- IT Energy use accounts for a substantial portion of overall consumption
  - Networks are an increasing part of this
- Customers want to lower operational expenses
  - Reducing energy consumption saves \$\$
  - Secondary effects: lower cooling requirements saves \$\$
- Energy Efficient Ethernet targets low-hanging fruit (cost, time, market introduction)

# The Feasibility of Energy Efficient Ethernet

### Presented by Howard Frazier – Broadcom

### IEEE 802.3 Working Group Dallas, TX November 14, 2006


## **Premise**

- There are many ways to save power when the link utilization is low
  - Goal is to do so while minimizing impact on standard and industry
- This presentation assumes the use of a simple, "brute force" approach
  - Use a high data rate PHY when the utilization is high
  - Use a low data rate PHY when the utilization is low
  - Assume that a low data rate PHY consumes less power than a high data rate PHY

# **Transition time**

- A key topic for further study ...
- Factors to be considered
  - switch/bridge buffer size
    - Shorter transition time minimizes disruption
- Use 1 ms transition time as a starting point for discussion
- Auto-negotiation is at least two orders of magnitude too slow

# Sequence



# **Protocol Candidates**

- LLDP (802.1AB)
  - with anticipated enhancements
- OAM (802.3ah)
- other slow protocol (802.3ad)
- MAC Control frame
- Physical layer signaling
  - e.g. special idle sequences or ordered sets

# **Stored link parameters**

- Another subject for further study ...
- E.g. equalizer coefficients
- May permit faster link speed changes.
- The power consumption associated with parameter storage is much less than the power consumption associated with operating the link

# Summary

- Use 1 ms transition time as a starting point for discussion
- Several candidate protocols exist
- Link parameter storage requirements are reasonable
- Energy Efficient Ethernet is feasible

# Energy Efficient Ethernet Why Now?

Presented by Mike Bennett Lawrence Berkeley National Lab U.S. Department of Energy

IEEE 802.3 Working Group Dallas, TX November 14, 2006

# Why Energy Efficiency Now?

- Networking industry has an opportunity to catch up with the server industry in this area
  - April 19, 2006 "Green Grid" formed
    - "A group of technology industry leaders form The Green Grid to help reduce growing power and cooling demands in enterprise datacenters."
  - Energy industry incentives for efficient products
- Energy Star
  - Requirements coming in 2009
    - "All computers shall reduce their network link speeds during times of low data traffic levels in accordance with any industry standards that provide for quick transitions among link rates"
- Customers like saving energy because it reduces operating costs

Reference: ENERGY STAR® Program Requirements for Computers (final draft, tier 2 requirements) available at http://www.energystar.gov/ia/partners/prod\_development/revisions/downloads/computer/ComputerSpec\_Final\_Draft.pdf

# Why Energy Efficiency Now?

- Energy Efficiency gets U.S. congressional recognition
  - July 12, 2006 House Resolution 5646 passes
    - "To study and promote the use of energy efficient computer servers in the United States"
  - What's next?
- The market for energy efficient Ethernet
  - Driven by customer's desire to save energy costs
  - Ethernet is used in markets where saving energy is crucial
  - Accelerate deployment for new applications
  - Enables use of incentives by energy industry
  - Ultimately these translate to increased demand

# Things to be studied ...

- Reducing energy consumption during periods of low link utilization is low hanging fruit
  - This will be the focus of a study group, if formed
- Issues that need study
  - How to minimize transition time?
  - How to avoid thrashing between speeds?
  - Interaction with higher-layer protocols
  - Link utilization on servers
  - Interaction with control policy

# Why Energy Efficiency Now?

- Reducing energy consumption during periods of low link utilization is technically feasible
  - Can leverage existing work, e.g. LLDP, OAM, etc.
- 802.3 can best define Energy Efficient Ethernet
- End users want lower power-consuming products
  - Power saving modes have been a desirable feature in electronic devices for quite a long time
- We have a chance to do something good for the planet
  - Not a bad thing to do

## **Supporters**

David I aw **Brad Booth Bill Woodruff** Scott Powell Wael Diab Li Tienan Claudio DeSanti Fred Schindler Andrew Fanara Paolo Bertoldi Joel Goergen John D'Ambrosia Steve Carlson Petar Pepeljugoski llango Ganga **David Chalupsky** Mike McConnell **Ted Sopher Gopi Sirineni** Alan Flatman **Geoff Thompson** Joseph Babanezhad **Geoff Garner** Eric Ryu **George Zimmerman** Shimon Muller Mark Bowman **Rahul Chopra** Sanjay Kasturia **Bob Noseworthy** Adam Bechtel

3Com AMCC Aquantia Broadcom Broadcom **China Standard Certification Center** Cisco Cisco EPA **European Commission DG JRC** Force10 Networks Force10 Networks **HSP** Design **IBM Research** Intel Intel **KeyEye Communications** Lawrence Berkeley National Lab Marvell LAN Technologies **Nortel Networks** Plato Networks Samsung Samsung Solarflare Sun **Tennessee Valley Authority Teranetics Teranetics** UNHIOL Yahoo!

# **Questions?**

# **Straw Polls**

**Call-For-Interest** 

• Should a Study Group be formed for "Energy Efficient Ethernet"?

Y: N: A:

# **Participation**

• I would participate in the "Energy Efficient Ethernet" Study Group in IEEE 802.3.

Tally:

 My company would support participation in the "Energy Efficient Ethernet" Study Group in IEEE 802.3

Tally:

## **Future Work**

- Ask 802.3 to form EEE SG on Thursday
- If approved
  - 802 EC authorization of EEE SG on Friday
  - First EEE SG meeting, week of January 2007 IEEE 802.3 Interim.

# **Thank You!**