CREDIT-BASED RATE FAIRNESS

DR. PHILIP AXER PHILIP.AXER@NXP.COM DON PANNELL DONALD.PANNELL@NXP.COM SUJAN PANDEY SUJAN.PANDEY@NXP.COM

FEB 2018

SECURE CONNECTIONS FOR A SMARTER WORLD

Supporters

| 1

Problem Statement

- Current PLCA proposal provides frame-rate fairness but not data-rate fairness
- Example: Assuming two nodes (A, B)
 - Frame sizes of 64 byte (A) and 1522 byte (B)
 - Achieved data rates are ~ A 4%, B: 96%

→Nodes which send a lot of small (control) frames are **penalized** significantly

• Is this 4% vs 96% data-rate fairness what all applications require?

Fairness in PLCA

- PLCA provides **bounded latency** due to round-robin scheme
- But bounded latency is **not** data-rate fairness
- PLCA is starvation free (assuming bounded MTU Maximum Transmission Unit)
 In any bus *exactly one* cycle a slot is guaranteed
- PLCA does not guarantee fair rate share

Rate-Limit Shaping is not a Solution

- Shaping (Qav, Leaky-Bucket,...) can address this issue
- But: each note is shaping the traffic in isolation
 → link capacity is not shared
- For example: Two nodes A (25% load), B (75% load)

Observation: Node A is limited to 25% link capacity, but node B has no data \rightarrow 75% link capacity is wasted

In a contention-free scenario node A should be able to get full link *capacity*

Credit-Based, Round-Robin Fairness - Mechanism

- PLCA "as is" plus a credit counter per node
- TX of frame consumes credit (here 1 credit per 64 byte as example).
- Each Time slot replenishes credit (here 1 credit per round as example)
- Each node keeps track of other nodes credit
- Example:

Proposal: Credit-Based, Round-Robin Fairness - Results

Example: Two node simulation Each node transmits as much as possible All frame size combinations are evaluated

Baseline PLCA

Credit-Based Fairness

Credit-Based, Round-Robin Fairness - Algorithm

- Parameters and variables:
 - replenish_quota (global): credit [bits] replenished each round
 - credit_i (per node): Credit level of node i in bits
- Transmission
 - Node is only allowed to send if it's credit level is greater or equal to zero
 - credit_i >= 0 \rightarrow grant
 - Credit is consumed after transmission
 - credit_i := credit_i framesize [bits]
- Replenishment
 - At the beginning of each round \rightarrow credit is replenished with fixed budget (e.g. 64*8 bit)
 - credit_i := credit_i + replenish_quota
- Idle Saturation
 - If a node has an empty queue and no pending transmissions, credit saturated at zero
 - level(queue)==0 && credit >= 0 \rightarrow credit_i := 0
- Advancement
 - If no node is transmitting in a round and some nodes j are stalled, the credit is advanced to guarantee progress in the next round
 - credit_i := credit_i max_{for all stalled nodes j}(credit_j)
 Note: credits are negative if stalled, hence max operator
- Notes/Observations
 - Credit level is positively saturated at +MaxFramesize
 - Credit level is negatively saturated at -MaxFramesize
 - There is at most one round with no progress

Credit-Based, Round-Robin Fairness – State Machine

NP

Credit-Based, Round-Robin Fairness - Corner Cases

- Worst-case overhead if some nodes stall and others idle
- Example:

Credit-Based, Round-Robin Fairness - Corner Cases

- Efficiency improvement: nodes have a common view on credit levels
- This effectively deactivates shaping in case only one station uses the medium
- Example:

Credit level of Node A can be derived by all stations

Node A *advances* credit to 0, as no other node claims a slot

10

NP

Credit-Based, Round-Robin Fairness - Corner Cases

• Advanced example:

Note: Here, 1 credit = 64 bytes

NP

Conclusion

- Date-rate fairness is achievable with PLCA with the addition of:
 - Credit counters
 - Credit state machine
 - -Miscellaneous
- What else should be modelled, simulated?

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.