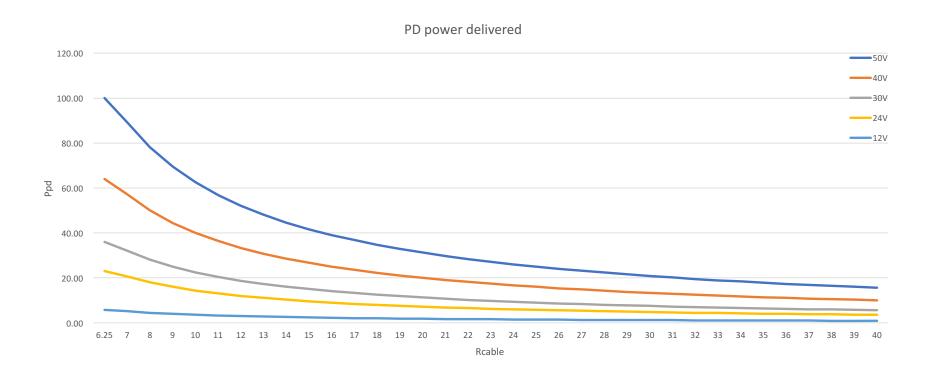
PD power, Vpse and Rcable

Chad Jones

Cisco Systems

Cable current, PSE power

- The equation for Icable is a quadratic:
 - R * $I^2 V_{PSE}$ * I + P_{PD} = 0 => I = (($V_{PSE} \pm SQRT(V_{PSE}^2 4 * R * P_{PD})$) / 2 * R)
 - The 'plus' solution is an unstable mode, use on the 'minus' solution
 - $P_{PSE} = V_{PSE} * I$

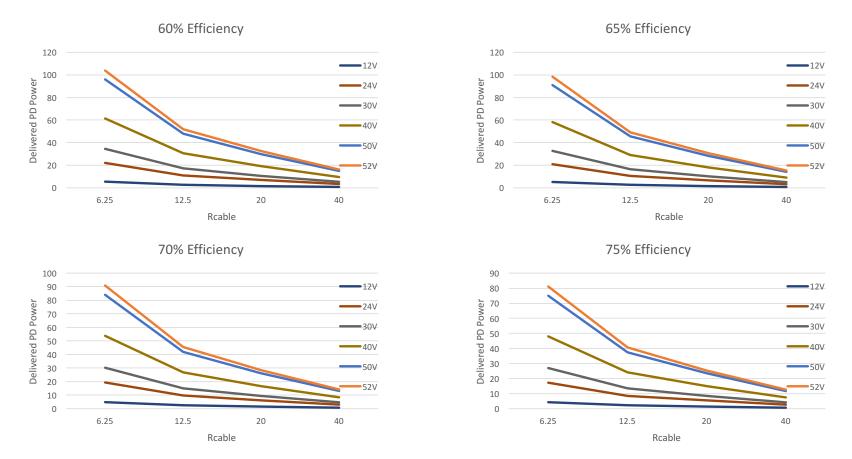

$$P_{PSE} = V_{PSE} ((V_{PSE} - SQRT(V_{PSE}^2 - 4 * R * P_{PD})) / 2 * R)$$

Max Current, Max PD power

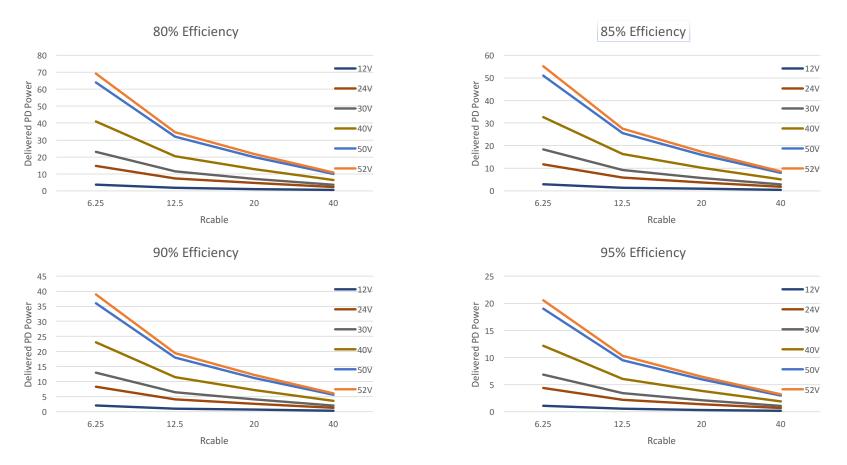
- The max of that quadratic can be found by taking the derivative wrt I, solving for I. But I don't really care about I_{MAX} as much as I want to know P_{PD_MAX}
- P_{PD_MAX} occurs when $P_{PD} = P_{CABLE}$
- $V_{PSE} * I R * I^2 = R * I^2 = I = V_{PSE} / 2 * R$
- And $P_{PD} = V_{PD}^* I = (V_{PSE} / 2)^* V_{PSE} / 2 * R = V_{PSE}^2 / 4 * R$

$$P_{PD MAX} = V_{PSE}^2 / 4 * R$$

Which is more important, R_{CABLE} or V_{PSE}


Efficiency

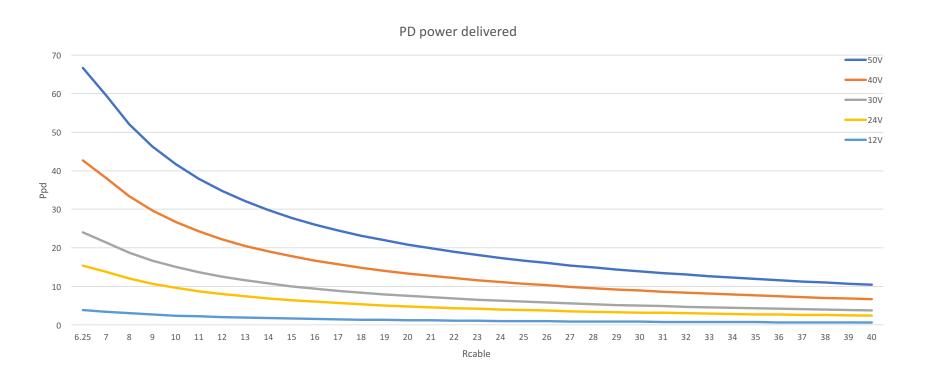
- The problem with the previous analysis is it ignores efficiency
 - It's not ignored, it's just 50%.


STANDARD/TYPE	V _{PSE}	R _{CABLE}	P _{PSE}	P _{PD}	EFFICIENCY
AF	44V	20 Ohms	15.4W	13W	84%
AT	50V	12.5 Ohms	30W	25.5W	85%
BT Type 3	50V	6.25 Ohms	60W	51W	85%
BT Type 4	52V	6.25 Ohms	91W	71.3W	78%
BT Type 4*	52V	6.25 Ohms	100W	75W	75%

^{*802.3}bt does not have a 100W P_{PSE} mode, this is the theoretical max for demonstration purposes

How does efficiency affect power delivered?

How does efficiency affect power delivered?



Efficiency

More realistic:
$$P_{PD} = V_{PSE}^2 / 6 * R$$

This yields an efficiency of about 80% and is good simple guide to estimate power delivered to a PD

More Realistic Efficiency

Conclusions

- Need to keep V_{PSE} higher, R_{CABLE} lower.
- Target worst case efficiency of about 80%.
- 12V V_{PSE} is a tough target. Looking at less than 4W P_{PD} .
- 24V can deliver about 10W over 10 ohms.
- Can get significant power from 50V with a reasonable R_{CABLE} (10 ohms is about 42W).