

Correlation of Model and Measurement for 10SPE Multidrop System

Fatma Caliskan, Markus Becht, Galin Ivanov

January 22, 2018

Outline

- Goal
- Correlation Concept
- Measurement Setup Component/Link level
 - Frequency-Domain Correlation Example
 - Time-Domain Correlation Example
- Measurement Setup System level
 - Model of Example Multidrop System
 - System Level Time-Domain Simulation Data
 - System Level Time-Domain Measurement Data
 - Sample Correlation of System Level Time-Domain Results
- Conclusion and Outlook

Achieve high level of correlation between simulation results and measurement data

Reliable modeling:

- Allows higher level of system parameter variations:
 ✓ Cable/stub lengths
 ✓ Component variations
 ✓ Impedance mismatches
 ✓ Noise variations
- Speeds up iteration cycles
- Enables flexible creation of worst case scenarios

Correlation Concept

- Measure existing example components:
 - CAN/CAN-FD quality UTP cables (100Ω)
 - MQS based cable connectors
 - Small analog front-end (AFE) boards to represent each node (capacitive coupling, termination resistors (100Ω or 10KΩ), variable stub lengths, drive signal SMA connectors, probing points)
- Create Parametric Models
- Compare Models vs. Measurements
 - On Component/Link level
 - On System level

Measurement Setup – Component/Link level

□ Arbitrary Waveform Generator (AWG) generates pre-conditioned signal

Digital oscilloscope w. active differential probes

□ Measured cable samples: 7.5m, 10m, 15m, etc.

Frequency-Domain Correlation Example

 ✓ Comparison of VNA measurement vs. simulation model for 15m cable length

MICROCHIP

- ✓ Initial model parameters same as in: "buntz_10SPE_03_1005.pdf"
- Further parameter adjustment gives better correlation levels

Time-Domain Correlation Example

MICROCHIP

Measurement Setup – System level

Data Source: AWG

Source data type: preconditioned (filtered) differential Manchester encoded 10SPE sample packet

Example 10SPE Multidrop System

1 2 3 4 5 6 7 8 10m 1m 80cm 2m 1m 2.5m 7.5m

Multiple Receivers: Oscilloscope

Simplified Node

Model of Example Multidrop System

• End-terminated configuration with 8 Nodes:

Distance between the nodes: 10m, 1m, 80cm, 2m, 1m, 2.5m, 7.5m;10 cm stubs at each node

- Simulated using measured (touchstone) or numerically modeled transmission lines
- Driving node can change position the other nodes are receivers
- Parametrization: Various configurations of cable segments and stub lengths possible

System Level Time-Domain Simulation Data

Map of signal quality (eye) at each node vs. driving node:

Allows identification of Worst-Case scenarios:

e.g. map of vertical eye-closure:

EYE HEIGHT [Volt]		RECEIVER							
		1	2	3	4	5	6	7	8
DRIVER	1	0.72	0.50	0.52	0.53	0.54	0.54	0.49	0.43
	2	0.61	0.72	0.70	0.68	0.65	0.64	0.60	0.53
	3	0.58	0.67	0.72	0.69	0.66	0.66	0.60	0.54
	4	0.55	0.64	0.67	0.72	0.68	0.67	0.61	0.55
	5	0.52	0.60	0.62	0.66	0.72	0.70	0.64	0.56
	6	0.52	0.60	0.62	0.65	0.71	0.72	0.65	0.57
	7	0.55	0.63	0.66	0.69	0.75	0.75	0.72	0.62
	8	0.41	0.48	0.51	0.54	0.57	0.54	0.44	0.72

System Level Time-Domain Measurement Data

Sample measurements at:

- Node #1 (driver side) and Node #8 (receiver side) 0.75 0.75 STD: 13.959 mUI pkpk3186 ps STD: 11.540 mUI pkpk2489 ps -44mUI +35mUI pkpk79 mUI -24mUI +37mUI pkpk62 mUI 0.50 0.50 B1: 0.473 V B1: 0.37 0.25 0.25 0.00 0.00 -0.25 -0.25 B1 0 50 hitered / weighte -0.50 0.50 TIE; not filtered / weighted, no SW PLL emulation
 - The Adjectempt / rium(U)
 53 us / 1347 Uis
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <thI</th>
 <thI</th>
 <thI</th>
 <thI</th>

TIE, determined Bitrate 25,000 MH2

and Node #6 (receiver side)

TIE, determined Bitrate 25.000 MHz

-0.75

TIE, AdcLength / rium(UI) : 53 us / 1347 UIs

-0.25 0.00 0.25 0.50 0.75

LECROYSDA6000A 1083 AcqTime: 01/18/2018 20:21:11 AnaTime: Fri Jan 19 12:49:42 2018

1.00

1.25

Sample Correlation of System Level Time-Domain Results

Node #3 (driver side)

Node #8 (receiver side)

Node #6 (receiver side)

Red – measured time-domain (oscilloscope) data
 Blue – simulation with measured S-parameter data

- Achieved convenient level of correlation
- Allows us to vary different system parameters and exercise/study realistic 10SPE system behavior
- Use the system model to:
 - Extend the system coverage to beyond what could only be measured
 - Identify Worst Case Scenarios
 - Exercise Critical Use-Cases (e.g. add noise)
 - Facilitate System requirement identification and verification