# Transmit Emissions Considerations for 10BASE-T1S

January 22, 2018

Mehmet Tazebay Broadcom

### Contributors

- Jay Cordaro
- Ahmad Chini
- Neven Pischl

#### **Problem Statement**

- Clauses 147 and 148 in 802.3cg D1.0 have 4B5B encoding with no scrambler before DME modulation.
- Peak emissions are of critical importance for automotive applications and have direct correlation with peak transmit PSD.
- Emission can be further reduced with methods described in this presentation, which evaluates the effect of the new proposed scrambler and the preamble on peak transmit PSD.

# Measurement Setup

Tektronix AWG7051 Arbitrary Waveform Generator connected directly to R&S FSU Spectrum Analyzer.  $50\Omega$  single-ended TX impedance into  $50\Omega$  coaxial cable.

- Max hold scan from 0.1 to 125 MHz
  - 0.1-30 MHz RBW set to 10 kHz
  - 30-125 MHz RBW set to 100 kHz
- TX Rate: 12.5 Mbps
- IPG: 12 Octet



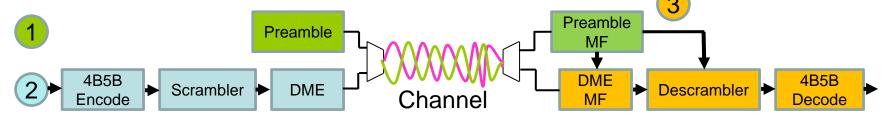
AWG

N

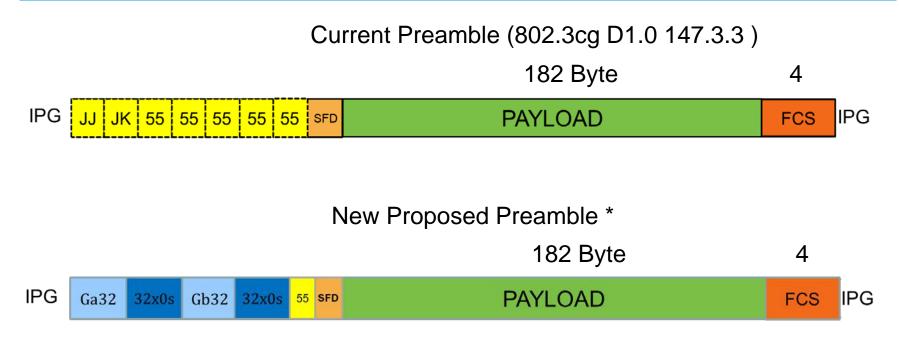
50Ω Coaxial Cable

- Payload 182 octet UDP frame captured from Ethernet network using Wireshark, payload 4B5B encoded and DME modulated per 802.3cg D1.0 Clause 147.1.2.
- Compare peak transmit PSD for:
  - 1. 4B5B encoded packet without scrambler and then DME modulated
  - 2. 4B5B encoded packet scrambled with Clause 97 Master mode scrambler  $x^{15}+x^4+1$  and then DME modulated

Spectrum


Analyzer

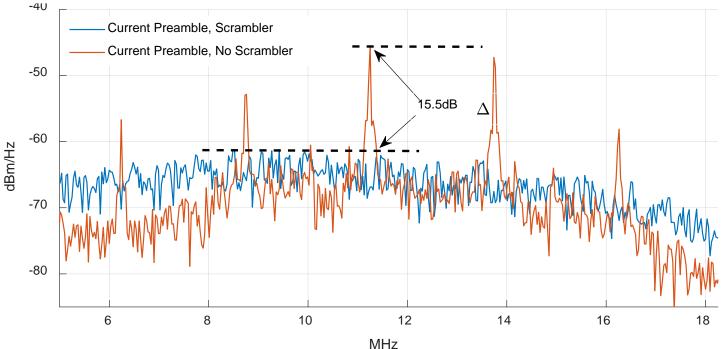
# How to scramble 10BASE-T1S Frames


- 10BASE-T1S does not transmit IDLEs on the line when no data present.
  → No continuously running scrambler.
- How to synchronize the scrambler?
- Transmit preamble unscrambled in order to synchronize.
  →Emissions performance of raw preamble is important.
- 2. Scramble the 4B5B-encoded payload at the transmitter with x<sup>15</sup>+x<sup>4</sup>+1 scrambler with same initial state loaded at beginning of every frame.

 $scr_initial_state = ([0011111001101])$ 

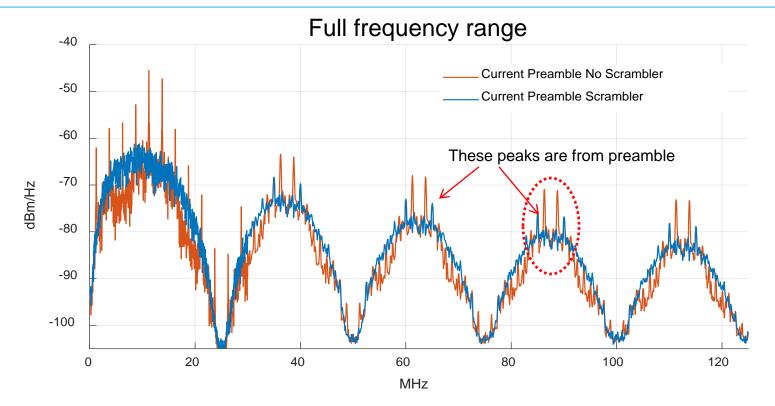
3. At receiver, detect preamble and then start descrambler with same fixed initial state at beginning of packet data.




#### Preamble and Packet Formats



\*http://www.ieee802.org/3/cg/public/adhoc/cordaro\_8023cg\_01\_0118\_v2.pdf


#### Peak transmit PSD Comparison for Current Preamble

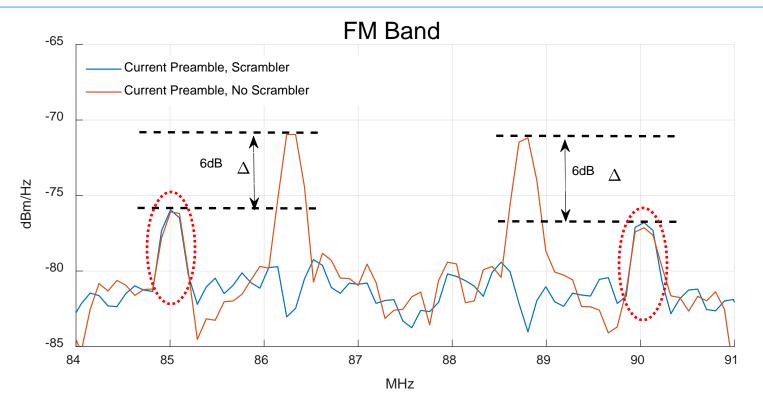
Main TX PSD Lobe



Scrambling reduces peak PSD and peak emission in the main lobe and should be used.

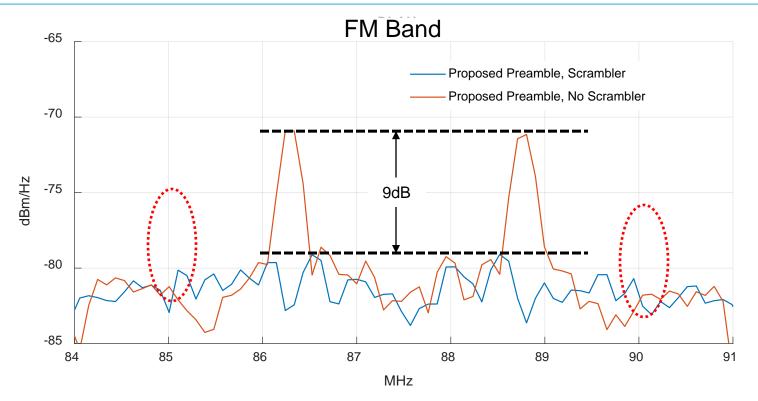
#### Peak transmit PSD Comparison for Current Preamble (cntd.)




Scrambling reduces peaks due to repetitive pattern in payload but peaks due to preamble remain.

#### Peak transmit PSD Comparison for Current vs. New Proposed Preamble




Improvement from scrambler is fully utilized with new preamble.

#### Peak transmit PSD for Current Preamble (FM Band Analysis)



Scrambling does improve peak PSD in FM Band, but limited by repeated 55 in preamble.

#### Effect of Proposed Preamble in Addition to Scrambler



Frame with scrambled payload and proposed preamble has less peak PSD in FM band.

# Conclusions

- The scrambler shown improves peak emissions especially below 30MHz. However, the full benefit of the scrambler is not utilized due to peaks associated with the current preamble.
- The proposed preamble further improves peak emission by an additional 3dB in the FM Band.
- TX spectral shaping may be required to control peak PSD to meet emissions masks especially in the FM Band.
- Precise detection of packet is required for proper descrambling.
- Proposed preamble and scrambling improves peak emissions and this improvement allows design with improved SNR.
- Proposed changes to D1.0:
  - 1. Add 15 bit scrambler for payload before DME encoding
  - 2. Replace current preamble with proposed preamble.