Multidrop PHY Simulation

David D. Brandt
Rockwell Automation

Purpose

- The purpose of this presentation is to:
- Investigate multidrop with large node count to address industrial in-cabinet component applications

Link Topology

- Christoph Wechsler, Audi AG
- http://www.ieee802.org/3/cg/public/May2017/wec hsler 3cg 01a 0517.pdf
- Adopt conclusion that "passive linear topology with end-of-line terminators and limited stubs" was the best option
- Feasible for at least 25 m and 8 nodes
- Results were based on parameters from:
- TJA 1081 FlexRay node transceiver

Symbol	Parameter	Conditions	Min	Typ	Max
Pins BP and BM	Unit				
$R_{\text {i(dif)(BP-BM) }}$	differential input resistance between pin idle level; $R_{\text {bus }}=\infty \Omega$	20	37	80	$\mathrm{k} \Omega$
	BP and pin BM				

Could we achieve more nodes?

- FlexRay achieves:
- 22 nodes @ 22 m (passive linear bus)
- RS485 increased node count by:
- Making the termination external
- High impedance transceivers
- 3-state transmitters

Unit Loads	Nodes	Value
1	32	12 k ohm
$1 / 2$	64	24 k ohm
$1 / 4$	128	48 k ohm
$1 / 8$	256	96 k ohm

Source Impedance

- Assume 100Ω line
- Center of long line:
- Drive 2 parallel 100Ω lines, one in each direction (50 Ω)
- Short line:
- Drive 2 parallel 100Ω terminators (50Ω)
- Near one end of long line:
- Drive 1100Ω terminator in parallel with a 100Ω line (50Ω)

Power Distribution

- Nodes are coupled by two 200 nF capacitors
- Termination is capacitive coupled with 200 nF each
- Power supply is decoupled by two 500 uH inductors
- 24 VDC, 4A, 64 nodes
- 687 mW @ 11 VDC

Concepts

- FlexRay has 3 driven states, try PAM-3 @ 7.5 MS/s
- Not successful with @ 10 of the same symbol with more than one node
- Too much sag
- Separate power was better
- DME @ 10 MS/s worked much better
- Shorter periods, less sag
- Twice the margin

Simulation Model

- Lumped load, 64 nodes

Simulation Waveforms

Conclusions

- It appears feasible to achieve a larger node count
- Single pair
- Powered nodes
- DME @ $10 \mathrm{MS} / \mathrm{s}$

