

#### PIERGIORGIO BERUTO ANTONIO ORZELLI

IEEE 802.3 Plenary Meeting, San Diego (CA) 2018 802.3cg draft 2.0 PLCA (Clause 148) Overview July 9<sup>th</sup>, 2018







- PHY-Level Collision Avoidance is an optional Generic Reconciliation Sublayer (gRS) defined in clause 148.
- It's meant to improve CSMA/CD performance (throughput, latency, fairness) for multidrop, mixingsegment networks featuring a low number of nodes and high bus loads.
  - Not a replacement of CSMA/CD  $\rightarrow$  PLCA actually relies on CSMA/CD functions
  - Not a replacement of TSN  $\rightarrow$  TSN is expected to work on top of PLCA
- Working principle is to dynamically create transmit opportunities to avoid physical collisions on the line.
- Can be seamlessly switched to/from plain CSMA/CD
- Supported by 10BASE-T1S PHY (Clause 147) operating in multi-drop mode over mixing-segment.





MAX PLCA cycle  $\rightarrow$  MAX latency

- PHYs are statically assigned unique node IDs [0..N]
- PHY with ID = 0 is the head node (PLCA coordinator)
  - Sends BEACON to signal the start of a PLCA cycle and let other PHYs synchronize their transmit opportunity timers
- Max latency is guaranteed to always be less than one PLCA cycle
- Round-robin scheduling provides fairness

- A PLCA cycle consists of one BEACON and N+1 transmit opportunities, allowing up to N+1 variable size packets to be sent
  - PHYs can start a transmission only during the transmit opportunity which number matches their own node ID
  - A new transmit opportunity starts if nothing is transmitted within TO\_TIMER or at the end of any packet transmission
  - PHYs are allowed to transmit COMMIT during their transmit opportunity to compensate for any MAC latency (e.g. IPG) before transmitting a packet











Valid DATA on the LINE

Physical collision on the LINE

PLCA COMMIT (green) before DATA

**PLCA model** 

PLCA BEACON (yellow) after DATA



PLCA TO\_TIMER / not my TO (orange)



PLCA TO\_TIMER / TO met (green)

PLCA uses CSMA/CD functions to have the MAC defer transmission until its next transmit opportunity is met

- In this process, PLCA may force the MAC to backoff at most once if the line is being accessed by another node
  - backoff time at first attempt is always less than the minimum ethernet packet size
    - No impact on throughput / latency!
- No physical collisions on the line!











- PLCA might look similar to a TDMA system at first glance
  - It has been designed to achieve some of the benefits of TDMA, indeed
  - But there are significant dissimilarities which makes it totally different
    - In fact, PLCA terminology changed since early presentations in 802.3cg to reflect this
- Transmit Opportunity (TO) vs Time Slot concept
  - In TDMA systems all PHYs are synchronized to some "absolute" time reference
    - Time is statically split into fixed slots, typically the size of one or more packets
    - PHYs are allowed to transmit only during their pre-assigned slots <u>for up to the slot duration</u>
      - Unused time within a slot is wasted ightarrow loss of effective throughout
      - Packets that would exceed the remaining slot time can't be transmitted and must be deferred
  - In a PLCA system, each PHY keeps track of TO timer on its own after each BEACON
    - TO\_TIMER is very short (typ. 20 bits) 
       negligible loss of throughput / latency when waiting for PHYs that have nothing to transmit (that is, they YIELD their TO).
    - Instead, once a transmission is initiated, other PHYs wait for this one to complete before generating a new TO.
      - This is actually in-line with CSMA/CD behavior where TX is deferred by carrier sense and bus utilization adapts to traffic!





- PLCA uses a variable delay line to meet transmit opportunities
  - Such variable delay would cause problems to time synchronization protocols
- To overcome this issue PLCA gRS is specified such as the SFD detection in the TX path occurs after the PLCA delay line





 $NOV \alpha TFCH$ 

# How PLCA Works





- **PROBLEM** 
  - The MAC is unaware of transmit opportunities and may initiate a transmission "anytime"
    - Changing the MAC is not an option
      - Would break compatibility with existing systems and is not in the scope of a physical layer project
    - how to defer a transmission to meet a TO?
- THOUGHTS
  - Carrier sense indication does the job of deferring TX but...
    - According to Clause 4, as soon as CRS is de-asserted, a pending packet will be sent after IPG, despite CRS being re-asserted (possibly causing a physical collision).
      - This has been done to provide CSMA/CD a certain level of fairness and mitigate the capture effect
  - Buffering packets is not an option either
    - Not the job of the physical layer and not cost/complexity effective from an implementation point of view
- SOLUTION
  - Use a **small** variable delay line to defer the transmission until a TO is met or a transmission from another PHY is initiated
    - Max possible delay = (MAX\_ID + 1) \* TO\_TIMER + BEACON\_TIMER = 8 \* 20 bits + 20 bits (typ.) = 180 bits for an 8 nodes network
  - In the latter case, report a local collision to the MAC and keep CRS asserted until next TO is met (despite actual line status)
    - MAC will back-off then perform a new transmission attempt after CRS is de-asserted and one IPG is elapsed
      - $\,$  Use COMMIT to prevent other PHYs to "steal" the TO while waiting for the IPG  $\,$
    - Since at first attempt the maximum back-off time is always less than the minimum packet length, the MAC will always be ready to make a new attempt at next TO
      - No waste of bandwidth!
    - Since CRS is kept asserted until next TO is met, the MAC will perform at maximum one back-off
      - no multiple (logical) collisions!





LINE

TXEN

TXD

CRS COL

TXEN

TXD

CRS COL

CUR ID

PHY #1

PHY #3

BEACON

В

### Example waveform



- BUS with 8 nodes
- Node #1 and #3 want to transmit data, others are silent

0

- PHY #1 just defers TX until its own transmit opportunity is available

DATA

DATA

- PHY #3 signals a logical collision because PHY #1 is transmitting, however:
  - No physical collisions on the line
  - Actual TX occurs immediately after PHY #1 transmission with no additional delay (MAX backoff + latency < MIN packet size)

CRS forced HIGH to prevent the MAC from transmitting until CUR\_ID = 3

2

DATA

JAM

CRS forced LOW to have the MAC deliver the packet

3

IDL#

DATA

DATA





### **Example waveform**



An example of PLCA cycle is shown, based on a PLCA system fully implemented within a PHY I.C. as shown in slide #16



# Performance Simulations





- PHY: standard 10BASE-5 or 10BASE-T1S + PLCA
- MAC: standard CSMA/CD capable MAC (802.3 clause 4)
  - host interface: DPRAM (one frame) + busy indication + size + trigger
  - PHY interface: MII (txd, txclk, txen, txer, rxd, rxclk, rxdv, rxer, col, crs)
- HOST: simple transmitter
  - wait for MAC BUSY = 0
  - wait random time between 0 and MTP (sim parameter, 0 = MAX speed)
  - write random payload data in DPRAM of size PKTSZ (sim. parameter 60 < PKTSZ < 1500) or random size</li>
- SNIFFER: measuring throughput, latency
  - throughput: number of received bytes (excluding FCS, PREAMBLE) / total simulation time
  - latency: time between MAC BUSY = 1 and MAC BUSY = 0 for each node
- Full digital simulation (Verilog)



### RESULTS

|      | MAX_LAT          |                      | AVG_LAT          |                      | STDEV            |                      |
|------|------------------|----------------------|------------------|----------------------|------------------|----------------------|
| MTP  | PLAIN<br>CSMA/CD | CSMA/CD<br>+<br>PLCA | PLAIN<br>CSMA/CD | CSMA/CD<br>+<br>PLCA | PLAIN<br>CSMA/CD | CSMA/CD<br>+<br>PLCA |
|      |                  | 443.4                |                  | 441.1                |                  | 26.2                 |
| 0    | 57595.6          | (-99.2%)             | 1553.3           | (-71.6%)             | 4826.0           | (-99.4%)             |
|      |                  | 54596.4              |                  | 186.4                |                  | 90.7                 |
| 500  | 59692.8          | (-99.0%)             | 1034.2           | (-81.9%)             | 4637.4           | (-98.0%)             |
|      |                  | 269.2                |                  | 74.8                 |                  | 31.6                 |
| 2000 | 29387.5          | (-99.0%)             | 618.9            | (-87.9%)             | 2298.2           | (-98.6%)             |
|      |                  | 223.7                |                  | 64.0                 |                  | 17.8                 |
| 5000 | 19645.4          | (-99.8%)             | 264.0            | (-75.0%)             | 1035.7           | (-98.3%)             |

- 500 packets, size = 60B, variable MTP, 6 nodes. Time unit is  $\mu s.$
- Comparison between plain CSMA/CD and CSMA/CD + PLCA





#### Simulations: CSMA/CD Throughput

Bitrate, MTP = 0



Bitrate, MTP = 2000

NUM PHYs



Bitrate, MTP = 5000





**Public Document** 

Mbit/s

CANOVATECH The Art of Silicon Sculpting

### Simulations: generic TDMA vs CSMA/CD + PLCA



THROGHPUT - burst with PKT\_SIZE = random(60, 1500)





LATENCY - burst with PKT SIZE = random(60, 1500)



Canovatech

The Art of Silicon Sculpting

LATENCY - burst with PKT SIZE = 1500

## Backward

compatibility





- Despite PLCA being described as a gRS (between MAC and MII interface), it is possible to fully implement PLCA within a PHY I.C. interworking with existing 10Mbps half-duplex MACs.
- Basically, PLCA can be implemented as an adapter between the MII interface exposed to the host MAC and the PHY itself (PCS, PMA).
  - The (internal) MII interface between PLCA and the PHY logically implements PLCA Clause 22 extensions (BEACON, COMMIT signaling)
  - The MII interface exposed to the MAC don't implement PLCA Clause 22 extensions
  - PLCA can still be disabled, in such case the exposed MII interface is directly mapped to the PHY





- Some MAC implementations have been found not to be fully compliant with Clause 4, as they discard packets received during a collision
- PLCA relies on this to receive valid packets in case of **logical** collisions (which in fact don't cause data corruption)
- It is possible to overcome this problem with a simple implementation work-around
  - Add a fixed delay in the RX path between the gRS and the MAC
    - Since collisions can only occur at the very beginning of a transmitted packet, it's no more possible to have packets received during this time.



## Demo





#### **10BASE-T1S Prototype Board**



- Commercial MAC embedded in MPC8306 CPU
- Digital RTL synthesized in FPGA
- AFE in discrete components

**DISCLAIMER:** The 10BASE-T1S prototype board is **not** a commercial product. It has been developed by Canova Tech S.r.l. for the sole purpose of developing and validating 10BASE-T1S IEEE specifications.

ETHO:

**10BASE-T1S** 

2 short-circuited

**RJ45 connectors** 

ETH1:

10/100BASE-T PHY

CPU:

2 x MII MACs

Bridge ETH1 – ETH0

Demo SW APP

10BASE-T1S

CANOVATECH The Art of Silicon Sculpting

ETH1:

10/100 Mbit

Ethernet





### **10BASE-T1S Demo SW Application**



CANOVATECH The Art of Silicon Sculpting



- Additionally, the 10BASE-T1S Prototype Boards act as a bridge between the multi-drop bus, which connects all the nodes together, and the standard 10BASE-T client port
- In the picture the traffic from two IP cameras is forwarded to a PC via the 10BASE-T1S mixingsegment network



MULTIDROP SEGMENT





- PLCA is a gRS part of the physical layer and improves CSMA/CD performance
  - Enables the use of Ethernet in real-time applications with deterministic performance requirements such as Automotive, Industrial, Building Automation and TLC
  - Not a CSMA/CD replacement, not a TSN replacement
  - Not a TDMA system
    - It's based on creating transmit opportunities dynamically (no traffic engineering)
    - There is no such concept of fixed time slots, nor network time synchronization
- It's described as a gRS but can be implemented in PHY ICs interworking with existing MAC / SoC
  - Although some MAC implementations are not fully compatible with Clause 4, a simple implementation work-around exists to have PLCA interwork with such products
    - This has been shown to work in real life on a 10BASE-T1S Prototype Board
- PLCA does not affect time precision protocol support (Clause 90) as TSSI detects SFD after PLCA variable delay line



## THANK YOU!

